10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-09 20:48:41 +01:00
QuantumPackage/plugins/local/tc_int/jast_grad_full.irp.f

246 lines
6.6 KiB
Fortran
Raw Normal View History

2024-06-26 11:15:30 +02:00
! ---
subroutine get_grad1_u12_for_tc(ipoint, n_grid2, resx, resy, resz, res)
BEGIN_DOC
2024-06-26 17:55:56 +02:00
!
2024-06-26 11:15:30 +02:00
! resx(ipoint) = [grad1 u(r1,r2)]_x1
! resy(ipoint) = [grad1 u(r1,r2)]_y1
! resz(ipoint) = [grad1 u(r1,r2)]_z1
! res (ipoint) = -0.5 [grad1 u(r1,r2)]^2
!
! We use:
! grid for r1
! extra_grid for r2
!
END_DOC
2024-06-26 15:31:44 +02:00
include 'constants.include.F'
2024-06-26 11:15:30 +02:00
implicit none
integer, intent(in) :: ipoint, n_grid2
double precision, intent(out) :: resx(n_grid2), resy(n_grid2), resz(n_grid2), res(n_grid2)
2024-06-26 15:31:44 +02:00
integer :: jpoint, i_nucl, p, mpA, npA, opA, pp
integer :: powmax1, powmax, powmax2
double precision :: r1(3), r2(3)
double precision :: tmp, tmp1, tmp2, tmp11, tmp22
double precision :: rn(3), f1A, grad1_f1A(3), f2A, grad2_f2A(3), g12, grad1_g12(3)
double precision, allocatable :: f1A_power(:), f2A_power(:), double_p(:), g12_power(:)
2024-06-26 11:15:30 +02:00
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
2024-06-26 15:31:44 +02:00
call grad1_j12_r1_seq(r1, n_grid2, resx, resy, resz)
2024-06-26 11:15:30 +02:00
2024-06-26 15:31:44 +02:00
do jpoint = 1, n_grid2 ! r2
2024-06-26 11:15:30 +02:00
res(jpoint) = -0.5d0 * (resx(jpoint) * resx(jpoint) + resy(jpoint) * resy(jpoint) + resz(jpoint) * resz(jpoint))
enddo
return
end
! ---
2024-06-26 15:31:44 +02:00
subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
include 'constants.include.F'
implicit none
integer , intent(in) :: n_grid2
double precision, intent(in) :: r1(3)
double precision, intent(out) :: gradx(n_grid2)
double precision, intent(out) :: grady(n_grid2)
double precision, intent(out) :: gradz(n_grid2)
integer :: jpoint, i_nucl, p, mpA, npA, opA
double precision :: r2(3)
double precision :: dx, dy, dz, r12, tmp
double precision :: rn(3), f1A, grad1_f1A(3), f2A, grad2_f2A(3), g12, grad1_g12(3)
2024-06-26 17:55:56 +02:00
double precision :: tmp1, tmp2, dist
2024-06-26 15:31:44 +02:00
integer :: powmax1, powmax, powmax2
double precision, allocatable :: f1A_power(:), f2A_power(:), double_p(:), g12_power(:)
powmax1 = max(maxval(jBH_m), maxval(jBH_n))
powmax2 = maxval(jBH_o)
powmax = max(powmax1, powmax2)
allocate(f1A_power(-1:powmax), f2A_power(-1:powmax), g12_power(-1:powmax), double_p(0:powmax))
do p = 0, powmax
double_p(p) = dble(p)
enddo
f1A_power(-1) = 0.d0
f2A_power(-1) = 0.d0
g12_power(-1) = 0.d0
f1A_power(0) = 1.d0
f2A_power(0) = 1.d0
g12_power(0) = 1.d0
do jpoint = 1, n_grid2 ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
gradx(jpoint) = 0.d0
grady(jpoint) = 0.d0
gradz(jpoint) = 0.d0
2024-06-26 17:55:56 +02:00
call jBH_elem_fct_grad_alpha1(r1, r2, g12, grad1_g12)
! dist = (r1(1) - r2(1)) * (r1(1) - r2(1)) &
! + (r1(2) - r2(2)) * (r1(2) - r2(2)) &
! + (r1(3) - r2(3)) * (r1(3) - r2(3))
!
! if(dist .ge. 1d-15) then
! dist = dsqrt( dist )
!
! tmp1 = 1.d0 / (1.d0 + dist)
!
! g12 = dist * tmp1
! tmp2 = tmp1 * tmp1 / dist
! grad1_g12(1) = tmp2 * (r1(1) - r2(1))
! grad1_g12(2) = tmp2 * (r1(2) - r2(2))
! grad1_g12(3) = tmp2 * (r1(3) - r2(3))
!
! else
!
! grad1_g12(1) = 0.d0
! grad1_g12(2) = 0.d0
! grad1_g12(3) = 0.d0
! g12 = 0.d0
!
! endif
!
do p = 1, powmax2
g12_power(p) = g12_power(p-1) * g12
enddo
2024-06-26 15:31:44 +02:00
do i_nucl = 1, nucl_num
rn(1) = nucl_coord(i_nucl,1)
rn(2) = nucl_coord(i_nucl,2)
rn(3) = nucl_coord(i_nucl,3)
2024-06-26 17:55:56 +02:00
call jBH_elem_fct_grad_alpha1(r1, rn, f1A, grad1_f1A)
! dist = (r1(1) - rn(1)) * (r1(1) - rn(1)) &
! + (r1(2) - rn(2)) * (r1(2) - rn(2)) &
! + (r1(3) - rn(3)) * (r1(3) - rn(3))
! if (dist > 1.d-15) then
! dist = dsqrt( dist )
!
! tmp1 = 1.d0 / (1.d0 + dist)
!
! f1A = dist * tmp1
! tmp2 = tmp1 * tmp1 / dist
! grad1_f1A(1) = tmp2 * (r1(1) - rn(1))
! grad1_f1A(2) = tmp2 * (r1(2) - rn(2))
! grad1_f1A(3) = tmp2 * (r1(3) - rn(3))
!
! else
!
! grad1_f1A(1) = 0.d0
! grad1_f1A(2) = 0.d0
! grad1_f1A(3) = 0.d0
! f1A = 0.d0
!
! endif
call jBH_elem_fct_grad_alpha1(r2, rn, f2A, grad2_f2A)
! dist = (r2(1) - rn(1)) * (r2(1) - rn(1)) &
! + (r2(2) - rn(2)) * (r2(2) - rn(2)) &
! + (r2(3) - rn(3)) * (r2(3) - rn(3))
!
! if (dist > 1.d-15) then
! dist = dsqrt( dist )
!
! tmp1 = 1.d0 / (1.d0 + dist)
!
! f2A = dist * tmp1
! tmp2 = tmp1 * tmp1 / dist
! grad2_f2A(1) = tmp2 * (r2(1) - rn(1))
! grad2_f2A(2) = tmp2 * (r2(2) - rn(2))
! grad2_f2A(3) = tmp2 * (r2(3) - rn(3))
!
! else
!
! grad2_f2A(1) = 0.d0
! grad2_f2A(2) = 0.d0
! grad2_f2A(3) = 0.d0
! f2A = 0.d0
!
! endif
2024-06-26 15:31:44 +02:00
! Compute powers of f1A and f2A
do p = 1, powmax1
f1A_power(p) = f1A_power(p-1) * f1A
f2A_power(p) = f2A_power(p-1) * f2A
enddo
do p = 1, jBH_size
mpA = jBH_m(p,i_nucl)
npA = jBH_n(p,i_nucl)
opA = jBH_o(p,i_nucl)
tmp = jBH_c(p,i_nucl)
2024-06-26 17:55:56 +02:00
! if (dabs(tmp) <= 1.d-10) cycle
!
2024-06-26 15:31:44 +02:00
if(mpA .eq. npA) then
tmp = tmp * 0.5d0
endif
tmp1 = double_p(mpA) * f1A_power(mpA-1) * f2A_power(npA) + double_p(npA) * f1A_power(npA-1) * f2A_power(mpA)
tmp1 = tmp1 * g12_power(opA) * tmp
tmp2 = double_p(opA) * g12_power(opA-1) * (f1A_power(mpA) * f2A_power(npA) + f1A_power(npA) * f2A_power(mpA)) * tmp
gradx(jpoint) = gradx(jpoint) + tmp1 * grad1_f1A(1) + tmp2 * grad1_g12(1)
grady(jpoint) = grady(jpoint) + tmp1 * grad1_f1A(2) + tmp2 * grad1_g12(2)
gradz(jpoint) = gradz(jpoint) + tmp1 * grad1_f1A(3) + tmp2 * grad1_g12(3)
enddo ! p
enddo ! i_nucl
enddo ! jpoint
return
end
2024-06-26 17:55:56 +02:00
subroutine jBH_elem_fct_grad_alpha1(r1, r2, fct, grad1_fct)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision, intent(out) :: fct, grad1_fct(3)
double precision :: dist, tmp1, tmp2
dist = (r1(1) - r2(1)) * (r1(1) - r2(1)) &
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
+ (r1(3) - r2(3)) * (r1(3) - r2(3))
if(dist .ge. 1d-15) then
dist = dsqrt( dist )
tmp1 = 1.d0 / (1.d0 + dist)
fct = dist * tmp1
tmp2 = tmp1 * tmp1 / dist
grad1_fct(1) = tmp2 * (r1(1) - r2(1))
grad1_fct(2) = tmp2 * (r1(2) - r2(2))
grad1_fct(3) = tmp2 * (r1(3) - r2(3))
else
grad1_fct(1) = 0.d0
grad1_fct(2) = 0.d0
grad1_fct(3) = 0.d0
fct = 0.d0
endif
return
end
! ---