mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-10 04:58:21 +01:00
26 lines
1.8 KiB
ReStructuredText
26 lines
1.8 KiB
ReStructuredText
|
===========
|
||
|
bi_ort_ints
|
||
|
===========
|
||
|
|
||
|
This module contains all necessary integrals for the TC Hamiltonian in a bi-orthonormal (BO) MO Basis.
|
||
|
See in bi_ortho_basis for more information.
|
||
|
The main providers are :
|
||
|
|
||
|
One-electron integrals
|
||
|
----------------------
|
||
|
+) ao_one_e_integrals_tc_tot : total one-electron Hamiltonian which might include non hermitian part coming from one-e correlation factor.
|
||
|
+) mo_bi_ortho_tc_one_e : one-electron Hamiltonian (h_core+one-J terms) on the BO-MO basis.
|
||
|
+) mo_bi_orth_bipole_x : x-component of the dipole operator on the BO-MO basis. (Same for y,z)
|
||
|
|
||
|
Two-electron integrals
|
||
|
----------------------
|
||
|
+) ao_two_e_tc_tot : Total two-electron operator (including the non-hermitian term of the TC Hamiltonian) on the AO basis
|
||
|
+) mo_bi_ortho_tc_two_e : Total two-electron operator on the BO-MO basis
|
||
|
|
||
|
Three-electron integrals
|
||
|
------------------------
|
||
|
+) three_body_ints_bi_ort : 6-indices three-electron tensor (-L) on the BO-MO basis. WARNING :: N^6 storage !
|
||
|
+) three_e_3_idx_direct_bi_ort : DIRECT term with 3 different indices of the -L operator. These terms appear in the DIAGONAL matrix element of the -L operator. The 5 other permutations needed to compute matrix elements can be found in three_body_ijm.irp.f
|
||
|
+) three_e_4_idx_direct_bi_ort : DIRECT term with 4 different indices of the -L operator. These terms appear in the OFF-DIAGONAL matrix element of the -L operator including SINGLE EXCITATIONS. The 5 other permutations needed to compute matrix elements can be found in three_body_ijmk.irp.f
|
||
|
+) three_e_5_idx_direct_bi_ort : DIRECT term with 5 different indices of the -L operator. These terms appear in the OFF-DIAGONAL matrix element of the -L operator including DOUBLE EXCITATIONS. The 5 other permutations needed to compute matrix elements can be found in three_body_ijmkl.irp.f
|