mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-12 14:08:26 +01:00
95 lines
3.0 KiB
Fortran
95 lines
3.0 KiB
Fortran
|
BEGIN_PROVIDER [integer, n_max_fit_slat]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! number of gaussian to fit exp(-x)
|
||
|
!
|
||
|
! I took 20 gaussians from the program bassto.f
|
||
|
END_DOC
|
||
|
n_max_fit_slat = 20
|
||
|
END_PROVIDER
|
||
|
|
||
|
BEGIN_PROVIDER [double precision, coef_fit_slat_gauss, (n_max_fit_slat)]
|
||
|
&BEGIN_PROVIDER [double precision, expo_fit_slat_gauss, (n_max_fit_slat)]
|
||
|
implicit none
|
||
|
include 'constants.include.F'
|
||
|
BEGIN_DOC
|
||
|
! fit the exp(-x) as
|
||
|
!
|
||
|
! \sum_{i = 1, n_max_fit_slat} coef_fit_slat_gauss(i) * exp(-expo_fit_slat_gauss(i) * x**2)
|
||
|
!
|
||
|
! The coefficient are taken from the program bassto.f
|
||
|
END_DOC
|
||
|
|
||
|
|
||
|
expo_fit_slat_gauss(01)=30573.77073000000
|
||
|
coef_fit_slat_gauss(01)=0.00338925525
|
||
|
expo_fit_slat_gauss(02)=5608.45238100000
|
||
|
coef_fit_slat_gauss(02)=0.00536433869
|
||
|
expo_fit_slat_gauss(03)=1570.95673400000
|
||
|
coef_fit_slat_gauss(03)=0.00818702846
|
||
|
expo_fit_slat_gauss(04)=541.39785110000
|
||
|
coef_fit_slat_gauss(04)=0.01202047655
|
||
|
expo_fit_slat_gauss(05)=212.43469630000
|
||
|
coef_fit_slat_gauss(05)=0.01711289568
|
||
|
expo_fit_slat_gauss(06)=91.31444574000
|
||
|
coef_fit_slat_gauss(06)=0.02376001022
|
||
|
expo_fit_slat_gauss(07)=42.04087246000
|
||
|
coef_fit_slat_gauss(07)=0.03229121736
|
||
|
expo_fit_slat_gauss(08)=20.43200443000
|
||
|
coef_fit_slat_gauss(08)=0.04303646818
|
||
|
expo_fit_slat_gauss(09)=10.37775161000
|
||
|
coef_fit_slat_gauss(09)=0.05624657578
|
||
|
expo_fit_slat_gauss(10)=5.46880754500
|
||
|
coef_fit_slat_gauss(10)=0.07192311571
|
||
|
expo_fit_slat_gauss(11)=2.97373529200
|
||
|
coef_fit_slat_gauss(11)=0.08949389001
|
||
|
expo_fit_slat_gauss(12)=1.66144190200
|
||
|
coef_fit_slat_gauss(12)=0.10727599240
|
||
|
expo_fit_slat_gauss(13)=0.95052560820
|
||
|
coef_fit_slat_gauss(13)=0.12178961750
|
||
|
expo_fit_slat_gauss(14)=0.55528683970
|
||
|
coef_fit_slat_gauss(14)=0.12740141870
|
||
|
expo_fit_slat_gauss(15)=0.33043360020
|
||
|
coef_fit_slat_gauss(15)=0.11759168160
|
||
|
expo_fit_slat_gauss(16)=0.19982303230
|
||
|
coef_fit_slat_gauss(16)=0.08953504394
|
||
|
expo_fit_slat_gauss(17)=0.12246840760
|
||
|
coef_fit_slat_gauss(17)=0.05066721317
|
||
|
expo_fit_slat_gauss(18)=0.07575825322
|
||
|
coef_fit_slat_gauss(18)=0.01806363869
|
||
|
expo_fit_slat_gauss(19)=0.04690146243
|
||
|
coef_fit_slat_gauss(19)=0.00305632563
|
||
|
expo_fit_slat_gauss(20)=0.02834749861
|
||
|
coef_fit_slat_gauss(20)=0.00013317513
|
||
|
|
||
|
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
double precision function slater_fit_gam(x,gam)
|
||
|
implicit none
|
||
|
double precision, intent(in) :: x,gam
|
||
|
BEGIN_DOC
|
||
|
! fit of the function exp(-gam * x) with gaussian functions
|
||
|
END_DOC
|
||
|
integer :: i
|
||
|
slater_fit_gam = 0.d0
|
||
|
do i = 1, n_max_fit_slat
|
||
|
slater_fit_gam += coef_fit_slat_gauss(i) * dexp(-expo_fit_slat_gauss(i) * gam * gam * x * x)
|
||
|
enddo
|
||
|
end
|
||
|
|
||
|
subroutine expo_fit_slater_gam(gam,expos)
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! returns the array of the exponents of the gaussians to fit exp(-gam*x)
|
||
|
END_DOC
|
||
|
double precision, intent(in) :: gam
|
||
|
double precision, intent(out) :: expos(n_max_fit_slat)
|
||
|
integer :: i
|
||
|
do i = 1, n_max_fit_slat
|
||
|
expos(i) = expo_fit_slat_gauss(i) * gam * gam
|
||
|
enddo
|
||
|
end
|
||
|
|