mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-19 04:22:32 +01:00
105 lines
3.6 KiB
Fortran
105 lines
3.6 KiB
Fortran
|
|
||
|
BEGIN_PROVIDER [double precision, angular_quadrature_points, (n_points_integration_angular,3) ]
|
||
|
&BEGIN_PROVIDER [double precision, weights_angular_points, (n_points_integration_angular)]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! weights and grid points for the integration on the angular variables on
|
||
|
! the unit sphere centered on (0,0,0)
|
||
|
! According to the LEBEDEV scheme
|
||
|
END_DOC
|
||
|
|
||
|
include 'constants.include.F'
|
||
|
integer :: i
|
||
|
double precision :: accu
|
||
|
double precision :: degre_rad
|
||
|
double precision :: x(n_points_integration_angular)
|
||
|
double precision :: y(n_points_integration_angular)
|
||
|
double precision :: z(n_points_integration_angular)
|
||
|
double precision :: w(n_points_integration_angular)
|
||
|
|
||
|
degre_rad = pi/180.d0
|
||
|
accu = 0.d0
|
||
|
|
||
|
select case (n_points_integration_angular)
|
||
|
|
||
|
|
||
|
case (0006)
|
||
|
call LD0006(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (0014)
|
||
|
call LD0014(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (0026)
|
||
|
call LD0026(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (0038)
|
||
|
call LD0038(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (0050)
|
||
|
call LD0050(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (0074)
|
||
|
call LD0074(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (0086)
|
||
|
call LD0086(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (0110)
|
||
|
call LD0110(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (0146)
|
||
|
call LD0146(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (0170)
|
||
|
call LD0170(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (0194)
|
||
|
call LD0194(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (0230)
|
||
|
call LD0230(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (0266)
|
||
|
call LD0266(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (0302)
|
||
|
call LD0302(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (0350)
|
||
|
call LD0350(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (0434)
|
||
|
call LD0434(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (0590)
|
||
|
call LD0590(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (0770)
|
||
|
call LD0770(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (0974)
|
||
|
call LD0974(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (1202)
|
||
|
call LD1202(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (1454)
|
||
|
call LD1454(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (1730)
|
||
|
call LD1730(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (2030)
|
||
|
call LD2030(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (2354)
|
||
|
call LD2354(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (2702)
|
||
|
call LD2702(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (3074)
|
||
|
call LD3074(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (3470)
|
||
|
call LD3470(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (3890)
|
||
|
call LD3890(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (4334)
|
||
|
call LD4334(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (4802)
|
||
|
call LD4802(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (5294)
|
||
|
call LD5294(X,Y,Z,W,n_points_integration_angular)
|
||
|
case (5810)
|
||
|
call LD5810(X,Y,Z,W,n_points_integration_angular)
|
||
|
case default
|
||
|
print *, irp_here//': wrong n_points_integration_angular. See in ${QP_ROOT}/src/becke_numerical_grid/list_angular_grid to see the possible angular grid points. Ex: '
|
||
|
print *, '[ 50 | 74 | 170 | 194 | 266 | 302 | 590 | 1202 | 2030 | 5810 ]'
|
||
|
stop -1
|
||
|
end select
|
||
|
|
||
|
do i = 1, n_points_integration_angular
|
||
|
angular_quadrature_points(i,1) = x(i)
|
||
|
angular_quadrature_points(i,2) = y(i)
|
||
|
angular_quadrature_points(i,3) = z(i)
|
||
|
weights_angular_points(i) = w(i) * 4.d0 * pi
|
||
|
accu += w(i)
|
||
|
enddo
|
||
|
|
||
|
END_PROVIDER
|