10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-09 07:33:49 +01:00
QuantumPackage/src/non_h_ints_mu/j12_nucl_utils.irp.f

699 lines
16 KiB
Fortran
Raw Normal View History

2023-02-06 19:00:35 +01:00
! ---
BEGIN_PROVIDER [ double precision, v_1b, (n_points_final_grid)]
implicit none
integer :: ipoint, i, j, phase
double precision :: x, y, z, dx, dy, dz
double precision :: a, d, e, fact_r
2023-05-07 15:07:51 +02:00
if(j1b_type .eq. 3) then
! v(r) = \Pi_{a} [1 - \exp(-\alpha_a (r - r_a)^2)]
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
fact_r = 1.d0
do j = 1, nucl_num
a = j1b_pen(j)
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
d = dx*dx + dy*dy + dz*dz
e = 1.d0 - dexp(-a*d)
fact_r = fact_r * e
enddo
v_1b(ipoint) = fact_r
2023-02-06 19:00:35 +01:00
enddo
2023-05-07 15:07:51 +02:00
elseif(j1b_type .eq. 4) then
! v(r) = 1 - \sum_{a} \exp(-\alpha_a (r - r_a)^2)
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
fact_r = 1.d0
do j = 1, nucl_num
a = j1b_pen(j)
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
d = dx*dx + dy*dy + dz*dz
fact_r = fact_r - dexp(-a*d)
enddo
v_1b(ipoint) = fact_r
enddo
else
2023-05-08 23:31:20 +02:00
print*, 'j1b_type = ', j1b_pen, 'is not implemented for v_1b'
2023-05-07 15:07:51 +02:00
stop
endif
2023-02-06 19:00:35 +01:00
END_PROVIDER
! ---
2023-05-07 15:07:51 +02:00
BEGIN_PROVIDER [double precision, v_1b_grad, (3, n_points_final_grid)]
2023-02-06 19:00:35 +01:00
implicit none
integer :: ipoint, i, j, phase
2023-05-07 15:07:51 +02:00
double precision :: x, y, z, dx, dy, dz, r2
2023-02-06 19:00:35 +01:00
double precision :: a, d, e
double precision :: fact_x, fact_y, fact_z
double precision :: ax_der, ay_der, az_der, a_expo
2023-05-07 15:07:51 +02:00
PROVIDE j1b_type
if(j1b_type .eq. 3) then
! v(r) = \Pi_{a} [1 - \exp(-\alpha_a (r - r_a)^2)]
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
fact_x = 0.d0
fact_y = 0.d0
fact_z = 0.d0
do i = 1, List_all_comb_b2_size
phase = 0
a_expo = 0.d0
ax_der = 0.d0
ay_der = 0.d0
az_der = 0.d0
do j = 1, nucl_num
a = dble(List_all_comb_b2(j,i)) * j1b_pen(j)
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
phase += List_all_comb_b2(j,i)
a_expo += a * (dx*dx + dy*dy + dz*dz)
ax_der += a * dx
ay_der += a * dy
az_der += a * dz
enddo
e = -2.d0 * (-1.d0)**dble(phase) * dexp(-a_expo)
fact_x += e * ax_der
fact_y += e * ay_der
fact_z += e * az_der
enddo
v_1b_grad(1,ipoint) = fact_x
v_1b_grad(2,ipoint) = fact_y
v_1b_grad(3,ipoint) = fact_z
enddo
elseif(j1b_type .eq. 4) then
2023-02-06 19:00:35 +01:00
2023-05-07 15:07:51 +02:00
! v(r) = 1 - \sum_{a} \exp(-\alpha_a (r - r_a)^2)
2023-02-06 19:00:35 +01:00
2023-05-07 15:07:51 +02:00
do ipoint = 1, n_points_final_grid
2023-02-06 19:00:35 +01:00
2023-05-07 15:07:51 +02:00
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
ax_der = 0.d0
ay_der = 0.d0
az_der = 0.d0
2023-02-06 19:00:35 +01:00
do j = 1, nucl_num
2023-05-07 15:07:51 +02:00
2023-02-06 19:00:35 +01:00
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
2023-05-07 15:07:51 +02:00
r2 = dx*dx + dy*dy + dz*dz
a = j1b_pen(j)
e = a * dexp(-a * r2)
ax_der += e * dx
ay_der += e * dy
az_der += e * dz
2023-02-06 19:00:35 +01:00
enddo
2023-05-07 15:07:51 +02:00
v_1b_grad(1,ipoint) = 2.d0 * ax_der
v_1b_grad(2,ipoint) = 2.d0 * ay_der
v_1b_grad(3,ipoint) = 2.d0 * az_der
2023-02-06 19:00:35 +01:00
enddo
2023-05-07 15:07:51 +02:00
else
print*, 'j1b_type = ', j1b_pen, 'is not implemented'
stop
endif
2023-02-06 19:00:35 +01:00
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, v_1b_lapl, (n_points_final_grid)]
implicit none
integer :: ipoint, i, j, phase
double precision :: x, y, z, dx, dy, dz
2023-05-08 23:31:20 +02:00
double precision :: a, e, b
2023-02-06 19:00:35 +01:00
double precision :: fact_r
double precision :: ax_der, ay_der, az_der, a_expo
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
fact_r = 0.d0
do i = 1, List_all_comb_b2_size
phase = 0
b = 0.d0
a_expo = 0.d0
ax_der = 0.d0
ay_der = 0.d0
az_der = 0.d0
do j = 1, nucl_num
a = dble(List_all_comb_b2(j,i)) * j1b_pen(j)
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
phase += List_all_comb_b2(j,i)
b += a
a_expo += a * (dx*dx + dy*dy + dz*dz)
ax_der += a * dx
ay_der += a * dy
az_der += a * dz
enddo
fact_r += (-1.d0)**dble(phase) * (-6.d0*b + 4.d0*(ax_der*ax_der + ay_der*ay_der + az_der*az_der) ) * dexp(-a_expo)
enddo
v_1b_lapl(ipoint) = fact_r
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, v_1b_list_b2, (n_points_final_grid)]
implicit none
integer :: i, ipoint
double precision :: x, y, z, coef, expo, dx, dy, dz
double precision :: fact_r
PROVIDE List_all_comb_b2_coef List_all_comb_b2_expo List_all_comb_b2_cent
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
fact_r = 0.d0
do i = 1, List_all_comb_b2_size
coef = List_all_comb_b2_coef(i)
expo = List_all_comb_b2_expo(i)
dx = x - List_all_comb_b2_cent(1,i)
dy = y - List_all_comb_b2_cent(2,i)
dz = z - List_all_comb_b2_cent(3,i)
fact_r += coef * dexp(-expo * (dx*dx + dy*dy + dz*dz))
enddo
v_1b_list_b2(ipoint) = fact_r
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, v_1b_list_b3, (n_points_final_grid)]
implicit none
integer :: i, ipoint
double precision :: x, y, z, coef, expo, dx, dy, dz
double precision :: fact_r
PROVIDE List_all_comb_b3_coef List_all_comb_b3_expo List_all_comb_b3_cent
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
fact_r = 0.d0
do i = 1, List_all_comb_b3_size
coef = List_all_comb_b3_coef(i)
expo = List_all_comb_b3_expo(i)
dx = x - List_all_comb_b3_cent(1,i)
dy = y - List_all_comb_b3_cent(2,i)
dz = z - List_all_comb_b3_cent(3,i)
fact_r += coef * dexp(-expo * (dx*dx + dy*dy + dz*dz))
enddo
v_1b_list_b3(ipoint) = fact_r
enddo
END_PROVIDER
2023-05-08 23:31:20 +02:00
! ---
BEGIN_PROVIDER [double precision, v_1b_square_grad, (n_points_final_grid,3)]
&BEGIN_PROVIDER [double precision, v_1b_square_lapl, (n_points_final_grid) ]
implicit none
integer :: ipoint, i
double precision :: x, y, z, dx, dy, dz, r2
double precision :: coef, expo, a_expo, tmp
double precision :: fact_x, fact_y, fact_z, fact_r
PROVIDE List_all_comb_b3_coef List_all_comb_b3_expo List_all_comb_b3_cent
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
fact_x = 0.d0
fact_y = 0.d0
fact_z = 0.d0
fact_r = 0.d0
do i = 1, List_all_comb_b3_size
coef = List_all_comb_b3_coef(i)
expo = List_all_comb_b3_expo(i)
dx = x - List_all_comb_b3_cent(1,i)
dy = y - List_all_comb_b3_cent(2,i)
dz = z - List_all_comb_b3_cent(3,i)
r2 = dx * dx + dy * dy + dz * dz
a_expo = expo * r2
tmp = coef * expo * dexp(-a_expo)
fact_x += tmp * dx
fact_y += tmp * dy
fact_z += tmp * dz
fact_r += tmp * (3.d0 - 2.d0 * a_expo)
enddo
v_1b_square_grad(ipoint,1) = -2.d0 * fact_x
v_1b_square_grad(ipoint,2) = -2.d0 * fact_y
v_1b_square_grad(ipoint,3) = -2.d0 * fact_z
v_1b_square_lapl(ipoint) = -2.d0 * fact_r
enddo
END_PROVIDER
2023-02-06 19:00:35 +01:00
! ---
2023-04-21 20:50:00 +02:00
double precision function j12_mu_r12(r12)
2023-02-06 19:00:35 +01:00
include 'constants.include.F'
implicit none
2023-04-21 20:50:00 +02:00
double precision, intent(in) :: r12
double precision :: mu_r12
2023-02-06 19:00:35 +01:00
mu_r12 = mu_erf * r12
2023-04-21 20:50:00 +02:00
j12_mu_r12 = 0.5d0 * r12 * (1.d0 - derf(mu_r12)) - inv_sq_pi_2 * dexp(-mu_r12*mu_r12) / mu_erf
2023-02-06 19:00:35 +01:00
return
2023-04-21 20:50:00 +02:00
end function j12_mu_r12
2023-02-06 19:00:35 +01:00
! ---
2023-04-21 20:50:00 +02:00
double precision function jmu_modif(r1, r2)
2023-02-06 19:00:35 +01:00
implicit none
2023-04-21 20:50:00 +02:00
double precision, intent(in) :: r1(3), r2(3)
double precision, external :: j12_mu, j12_nucl
2023-02-06 19:00:35 +01:00
2023-04-21 20:50:00 +02:00
jmu_modif = j12_mu(r1, r2) * j12_nucl(r1, r2)
2023-02-06 19:00:35 +01:00
return
2023-04-21 20:50:00 +02:00
end function jmu_modif
2023-02-06 19:00:35 +01:00
! ---
double precision function j12_mu_gauss(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
integer :: i
double precision :: r12, coef, expo
r12 = (r1(1) - r2(1)) * (r1(1) - r2(1)) &
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
+ (r1(3) - r2(3)) * (r1(3) - r2(3))
j12_mu_gauss = 0.d0
do i = 1, n_max_fit_slat
expo = expo_gauss_j_mu_x(i)
coef = coef_gauss_j_mu_x(i)
j12_mu_gauss += coef * dexp(-expo*r12)
enddo
return
end function j12_mu_gauss
! ---
double precision function j12_nucl(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision, external :: j1b_nucl
j12_nucl = j1b_nucl(r1) * j1b_nucl(r2)
return
end function j12_nucl
! ---
! ---------------------------------------------------------------------------------------
2023-04-21 20:50:00 +02:00
double precision function grad_x_j1b_nucl_num(r)
2023-02-06 19:00:35 +01:00
implicit none
double precision, intent(in) :: r(3)
double precision :: r_eps(3), eps, fp, fm, delta
double precision, external :: j1b_nucl
eps = 1d-6
r_eps = r
delta = max(eps, dabs(eps*r(1)))
r_eps(1) = r_eps(1) + delta
fp = j1b_nucl(r_eps)
r_eps(1) = r_eps(1) - 2.d0 * delta
fm = j1b_nucl(r_eps)
2023-04-21 20:50:00 +02:00
grad_x_j1b_nucl_num = 0.5d0 * (fp - fm) / delta
2023-02-06 19:00:35 +01:00
return
2023-04-21 20:50:00 +02:00
end function grad_x_j1b_nucl_num
2023-02-06 19:00:35 +01:00
2023-04-21 20:50:00 +02:00
double precision function grad_y_j1b_nucl_num(r)
2023-02-06 19:00:35 +01:00
implicit none
double precision, intent(in) :: r(3)
double precision :: r_eps(3), eps, fp, fm, delta
double precision, external :: j1b_nucl
eps = 1d-6
r_eps = r
delta = max(eps, dabs(eps*r(2)))
r_eps(2) = r_eps(2) + delta
fp = j1b_nucl(r_eps)
r_eps(2) = r_eps(2) - 2.d0 * delta
fm = j1b_nucl(r_eps)
2023-04-21 20:50:00 +02:00
grad_y_j1b_nucl_num = 0.5d0 * (fp - fm) / delta
2023-02-06 19:00:35 +01:00
return
2023-04-21 20:50:00 +02:00
end function grad_y_j1b_nucl_num
2023-02-06 19:00:35 +01:00
2023-04-21 20:50:00 +02:00
double precision function grad_z_j1b_nucl_num(r)
2023-02-06 19:00:35 +01:00
implicit none
double precision, intent(in) :: r(3)
double precision :: r_eps(3), eps, fp, fm, delta
double precision, external :: j1b_nucl
eps = 1d-6
r_eps = r
delta = max(eps, dabs(eps*r(3)))
r_eps(3) = r_eps(3) + delta
fp = j1b_nucl(r_eps)
r_eps(3) = r_eps(3) - 2.d0 * delta
fm = j1b_nucl(r_eps)
2023-04-21 20:50:00 +02:00
grad_z_j1b_nucl_num = 0.5d0 * (fp - fm) / delta
2023-02-06 19:00:35 +01:00
return
2023-04-21 20:50:00 +02:00
end function grad_z_j1b_nucl_num
2023-02-06 19:00:35 +01:00
! ---------------------------------------------------------------------------------------
! ---
double precision function lapl_j1b_nucl(r)
implicit none
double precision, intent(in) :: r(3)
double precision :: r_eps(3), eps, fp, fm, delta
2023-04-21 20:50:00 +02:00
double precision, external :: grad_x_j1b_nucl_num
double precision, external :: grad_y_j1b_nucl_num
double precision, external :: grad_z_j1b_nucl_num
2023-02-06 19:00:35 +01:00
eps = 1d-5
r_eps = r
lapl_j1b_nucl = 0.d0
! ---
delta = max(eps, dabs(eps*r(1)))
r_eps(1) = r_eps(1) + delta
2023-04-21 20:50:00 +02:00
fp = grad_x_j1b_nucl_num(r_eps)
2023-02-06 19:00:35 +01:00
r_eps(1) = r_eps(1) - 2.d0 * delta
2023-04-21 20:50:00 +02:00
fm = grad_x_j1b_nucl_num(r_eps)
2023-02-06 19:00:35 +01:00
r_eps(1) = r_eps(1) + delta
lapl_j1b_nucl += 0.5d0 * (fp - fm) / delta
! ---
delta = max(eps, dabs(eps*r(2)))
r_eps(2) = r_eps(2) + delta
2023-04-21 20:50:00 +02:00
fp = grad_y_j1b_nucl_num(r_eps)
2023-02-06 19:00:35 +01:00
r_eps(2) = r_eps(2) - 2.d0 * delta
2023-04-21 20:50:00 +02:00
fm = grad_y_j1b_nucl_num(r_eps)
2023-02-06 19:00:35 +01:00
r_eps(2) = r_eps(2) + delta
lapl_j1b_nucl += 0.5d0 * (fp - fm) / delta
! ---
delta = max(eps, dabs(eps*r(3)))
r_eps(3) = r_eps(3) + delta
2023-04-21 20:50:00 +02:00
fp = grad_z_j1b_nucl_num(r_eps)
2023-02-06 19:00:35 +01:00
r_eps(3) = r_eps(3) - 2.d0 * delta
2023-04-21 20:50:00 +02:00
fm = grad_z_j1b_nucl_num(r_eps)
2023-02-06 19:00:35 +01:00
r_eps(3) = r_eps(3) + delta
lapl_j1b_nucl += 0.5d0 * (fp - fm) / delta
! ---
return
end function lapl_j1b_nucl
! ---
! ---------------------------------------------------------------------------------------
double precision function grad1_x_jmu_modif(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision :: r1_eps(3), eps, fp, fm, delta
double precision, external :: jmu_modif
eps = 1d-7
r1_eps = r1
delta = max(eps, dabs(eps*r1(1)))
r1_eps(1) = r1_eps(1) + delta
fp = jmu_modif(r1_eps, r2)
r1_eps(1) = r1_eps(1) - 2.d0 * delta
fm = jmu_modif(r1_eps, r2)
grad1_x_jmu_modif = 0.5d0 * (fp - fm) / delta
return
end function grad1_x_jmu_modif
double precision function grad1_y_jmu_modif(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision :: r1_eps(3), eps, fp, fm, delta
double precision, external :: jmu_modif
eps = 1d-7
r1_eps = r1
delta = max(eps, dabs(eps*r1(2)))
r1_eps(2) = r1_eps(2) + delta
fp = jmu_modif(r1_eps, r2)
r1_eps(2) = r1_eps(2) - 2.d0 * delta
fm = jmu_modif(r1_eps, r2)
grad1_y_jmu_modif = 0.5d0 * (fp - fm) / delta
return
end function grad1_y_jmu_modif
double precision function grad1_z_jmu_modif(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision :: r1_eps(3), eps, fp, fm, delta
double precision, external :: jmu_modif
eps = 1d-7
r1_eps = r1
delta = max(eps, dabs(eps*r1(3)))
r1_eps(3) = r1_eps(3) + delta
fp = jmu_modif(r1_eps, r2)
r1_eps(3) = r1_eps(3) - 2.d0 * delta
fm = jmu_modif(r1_eps, r2)
grad1_z_jmu_modif = 0.5d0 * (fp - fm) / delta
return
end function grad1_z_jmu_modif
! ---------------------------------------------------------------------------------------
! ---
! ---------------------------------------------------------------------------------------
double precision function grad1_x_j12_mu_num(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision :: r1_eps(3), eps, fp, fm, delta
double precision, external :: j12_mu
eps = 1d-7
r1_eps = r1
delta = max(eps, dabs(eps*r1(1)))
r1_eps(1) = r1_eps(1) + delta
fp = j12_mu(r1_eps, r2)
r1_eps(1) = r1_eps(1) - 2.d0 * delta
fm = j12_mu(r1_eps, r2)
grad1_x_j12_mu_num = 0.5d0 * (fp - fm) / delta
return
end function grad1_x_j12_mu_num
double precision function grad1_y_j12_mu_num(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision :: r1_eps(3), eps, fp, fm, delta
double precision, external :: j12_mu
eps = 1d-7
r1_eps = r1
delta = max(eps, dabs(eps*r1(2)))
r1_eps(2) = r1_eps(2) + delta
fp = j12_mu(r1_eps, r2)
r1_eps(2) = r1_eps(2) - 2.d0 * delta
fm = j12_mu(r1_eps, r2)
grad1_y_j12_mu_num = 0.5d0 * (fp - fm) / delta
return
end function grad1_y_j12_mu_num
double precision function grad1_z_j12_mu_num(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision :: r1_eps(3), eps, fp, fm, delta
double precision, external :: j12_mu
eps = 1d-7
r1_eps = r1
delta = max(eps, dabs(eps*r1(3)))
r1_eps(3) = r1_eps(3) + delta
fp = j12_mu(r1_eps, r2)
r1_eps(3) = r1_eps(3) - 2.d0 * delta
fm = j12_mu(r1_eps, r2)
grad1_z_j12_mu_num = 0.5d0 * (fp - fm) / delta
return
end function grad1_z_j12_mu_num
! ---------------------------------------------------------------------------------------
subroutine grad1_jmu_modif_num(r1, r2, grad)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision, intent(out) :: grad(3)
double precision :: tmp0, tmp1, tmp2, tmp3, tmp4, grad_u12(3)
double precision, external :: j12_mu
double precision, external :: j1b_nucl
2023-04-21 20:50:00 +02:00
double precision, external :: grad_x_j1b_nucl_num
double precision, external :: grad_y_j1b_nucl_num
double precision, external :: grad_z_j1b_nucl_num
2023-02-06 19:00:35 +01:00
2023-04-21 20:50:00 +02:00
call grad1_j12_mu(r1, r2, grad_u12)
2023-02-06 19:00:35 +01:00
tmp0 = j1b_nucl(r1)
tmp1 = j1b_nucl(r2)
tmp2 = j12_mu(r1, r2)
tmp3 = tmp0 * tmp1
tmp4 = tmp2 * tmp1
2023-04-21 20:50:00 +02:00
grad(1) = tmp3 * grad_u12(1) + tmp4 * grad_x_j1b_nucl_num(r1)
grad(2) = tmp3 * grad_u12(2) + tmp4 * grad_y_j1b_nucl_num(r1)
grad(3) = tmp3 * grad_u12(3) + tmp4 * grad_z_j1b_nucl_num(r1)
2023-02-06 19:00:35 +01:00
return
end subroutine grad1_jmu_modif_num
! ---