mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-08 07:03:52 +01:00
296 lines
8.7 KiB
Fortran
296 lines
8.7 KiB
Fortran
|
|
||
|
! ---
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||
|
|
||
|
BEGIN_DOC
|
||
|
!
|
||
|
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||
|
!
|
||
|
! three_e_5_idx_direct_bi_ort_old(m,l,j,k,i) = <mlk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||
|
!
|
||
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
integer :: i, j, k, m, l
|
||
|
double precision :: integral, wall1, wall0
|
||
|
|
||
|
three_e_5_idx_direct_bi_ort_old = 0.d0
|
||
|
print *, ' Providing the three_e_5_idx_direct_bi_ort_old ...'
|
||
|
call wall_time(wall0)
|
||
|
|
||
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||
|
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP DEFAULT (NONE) &
|
||
|
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||
|
!$OMP SHARED (mo_num,three_e_5_idx_direct_bi_ort_old)
|
||
|
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||
|
do i = 1, mo_num
|
||
|
do k = 1, mo_num
|
||
|
do j = 1, mo_num
|
||
|
do l = 1, mo_num
|
||
|
do m = 1, mo_num
|
||
|
call give_integrals_3_body_bi_ort(m, l, k, m, j, i, integral)
|
||
|
three_e_5_idx_direct_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
call wall_time(wall1)
|
||
|
print *, ' wall time for three_e_5_idx_direct_bi_ort_old', wall1 - wall0
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
! ---
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||
|
|
||
|
BEGIN_DOC
|
||
|
!
|
||
|
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||
|
!
|
||
|
! three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i) = <mlk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||
|
!
|
||
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||
|
!
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
integer :: i, j, k, m, l
|
||
|
double precision :: integral, wall1, wall0
|
||
|
|
||
|
three_e_5_idx_cycle_1_bi_ort_old = 0.d0
|
||
|
print *, ' Providing the three_e_5_idx_cycle_1_bi_ort_old ...'
|
||
|
call wall_time(wall0)
|
||
|
|
||
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||
|
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP DEFAULT (NONE) &
|
||
|
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||
|
!$OMP SHARED (mo_num,three_e_5_idx_cycle_1_bi_ort_old)
|
||
|
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||
|
do i = 1, mo_num
|
||
|
do k = 1, mo_num
|
||
|
do j = 1, mo_num
|
||
|
do l = 1, mo_num
|
||
|
do m = 1, mo_num
|
||
|
call give_integrals_3_body_bi_ort(m, l, k, j, i, m, integral)
|
||
|
three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
call wall_time(wall1)
|
||
|
print *, ' wall time for three_e_5_idx_cycle_1_bi_ort_old', wall1 - wall0
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
! ---
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||
|
|
||
|
BEGIN_DOC
|
||
|
!
|
||
|
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||
|
!
|
||
|
! three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i) = <mlk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||
|
!
|
||
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||
|
!
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
integer :: i, j, k, m, l
|
||
|
double precision :: integral, wall1, wall0
|
||
|
|
||
|
three_e_5_idx_cycle_2_bi_ort_old = 0.d0
|
||
|
print *, ' Providing the three_e_5_idx_cycle_2_bi_ort_old ...'
|
||
|
call wall_time(wall0)
|
||
|
|
||
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||
|
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP DEFAULT (NONE) &
|
||
|
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||
|
!$OMP SHARED (mo_num,three_e_5_idx_cycle_2_bi_ort_old)
|
||
|
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||
|
do i = 1, mo_num
|
||
|
do k = 1, mo_num
|
||
|
do j = 1, mo_num
|
||
|
do m = 1, mo_num
|
||
|
do l = 1, mo_num
|
||
|
call give_integrals_3_body_bi_ort(m, l, k, i, m, j, integral)
|
||
|
three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
call wall_time(wall1)
|
||
|
print *, ' wall time for three_e_5_idx_cycle_2_bi_ort_old', wall1 - wall0
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
! ---
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||
|
|
||
|
BEGIN_DOC
|
||
|
!
|
||
|
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||
|
!
|
||
|
! three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i) = <mlk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||
|
!
|
||
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||
|
!
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
integer :: i, j, k, m, l
|
||
|
double precision :: integral, wall1, wall0
|
||
|
|
||
|
three_e_5_idx_exch23_bi_ort_old = 0.d0
|
||
|
print *, ' Providing the three_e_5_idx_exch23_bi_ort_old ...'
|
||
|
call wall_time(wall0)
|
||
|
|
||
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||
|
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP DEFAULT (NONE) &
|
||
|
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||
|
!$OMP SHARED (mo_num,three_e_5_idx_exch23_bi_ort_old)
|
||
|
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||
|
do i = 1, mo_num
|
||
|
do k = 1, mo_num
|
||
|
do j = 1, mo_num
|
||
|
do l = 1, mo_num
|
||
|
do m = 1, mo_num
|
||
|
call give_integrals_3_body_bi_ort(m, l, k, j, m, i, integral)
|
||
|
three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
call wall_time(wall1)
|
||
|
print *, ' wall time for three_e_5_idx_exch23_bi_ort_old', wall1 - wall0
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
! ---
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||
|
|
||
|
BEGIN_DOC
|
||
|
!
|
||
|
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||
|
!
|
||
|
! three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i) = <mlk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||
|
!
|
||
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||
|
!
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
integer :: i, j, k, m, l
|
||
|
double precision :: integral, wall1, wall0
|
||
|
|
||
|
three_e_5_idx_exch13_bi_ort_old = 0.d0
|
||
|
print *, ' Providing the three_e_5_idx_exch13_bi_ort_old ...'
|
||
|
call wall_time(wall0)
|
||
|
|
||
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||
|
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP DEFAULT (NONE) &
|
||
|
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||
|
!$OMP SHARED (mo_num,three_e_5_idx_exch13_bi_ort_old)
|
||
|
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||
|
do i = 1, mo_num
|
||
|
do k = 1, mo_num
|
||
|
do j = 1, mo_num
|
||
|
do l = 1, mo_num
|
||
|
do m = 1, mo_num
|
||
|
call give_integrals_3_body_bi_ort(m, l, k, i, j, m, integral)
|
||
|
three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
call wall_time(wall1)
|
||
|
print *, ' wall time for three_e_5_idx_exch13_bi_ort_old', wall1 - wall0
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
! ---
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||
|
|
||
|
BEGIN_DOC
|
||
|
!
|
||
|
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||
|
!
|
||
|
! three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = <mlk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||
|
!
|
||
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||
|
!
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
integer :: i, j, k, m, l
|
||
|
double precision :: integral, wall1, wall0
|
||
|
|
||
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||
|
PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t
|
||
|
|
||
|
three_e_5_idx_exch12_bi_ort_old = 0.d0
|
||
|
print *, ' Providing the three_e_5_idx_exch12_bi_ort_old ...'
|
||
|
call wall_time(wall0)
|
||
|
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP DEFAULT (NONE) &
|
||
|
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||
|
!$OMP SHARED (mo_num,three_e_5_idx_exch12_bi_ort_old)
|
||
|
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||
|
do i = 1, mo_num
|
||
|
do k = 1, mo_num
|
||
|
do j = 1, mo_num
|
||
|
do l = 1, mo_num
|
||
|
do m = 1, mo_num
|
||
|
call give_integrals_3_body_bi_ort(m, l, k, m, i, j, integral)
|
||
|
three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
call wall_time(wall1)
|
||
|
print *, ' wall time for three_e_5_idx_exch12_bi_ort_old', wall1 - wall0
|
||
|
|
||
|
END_PROVIDER
|
||
|
|