mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-15 18:43:51 +01:00
367 lines
9.6 KiB
Fortran
367 lines
9.6 KiB
Fortran
|
|
||
|
! ---
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, three_e_3_idx_direct_bi_ort, (mo_num, mo_num, mo_num)]
|
||
|
|
||
|
BEGIN_DOC
|
||
|
!
|
||
|
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the direct terms
|
||
|
!
|
||
|
! three_e_3_idx_direct_bi_ort(m,j,i) = <mji|-L|mji>
|
||
|
!
|
||
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||
|
!
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
integer :: i, j, m
|
||
|
double precision :: integral, wall1, wall0
|
||
|
|
||
|
three_e_3_idx_direct_bi_ort = 0.d0
|
||
|
print *, ' Providing the three_e_3_idx_direct_bi_ort ...'
|
||
|
call wall_time(wall0)
|
||
|
|
||
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||
|
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP DEFAULT (NONE) &
|
||
|
!$OMP PRIVATE (i,j,m,integral) &
|
||
|
!$OMP SHARED (mo_num,three_e_3_idx_direct_bi_ort)
|
||
|
!$OMP DO SCHEDULE (dynamic)
|
||
|
do i = 1, mo_num
|
||
|
do j = 1, mo_num
|
||
|
do m = j, mo_num
|
||
|
call give_integrals_3_body_bi_ort(m, j, i, m, j, i, integral)
|
||
|
three_e_3_idx_direct_bi_ort(m,j,i) = -1.d0 * integral
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
do i = 1, mo_num
|
||
|
do j = 1, mo_num
|
||
|
do m = 1, j
|
||
|
three_e_3_idx_direct_bi_ort(m,j,i) = three_e_3_idx_direct_bi_ort(j,m,i)
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
call wall_time(wall1)
|
||
|
print *, ' wall time for three_e_3_idx_direct_bi_ort', wall1 - wall0
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
! ---
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, three_e_3_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num)]
|
||
|
|
||
|
BEGIN_DOC
|
||
|
!
|
||
|
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the first cyclic permutation
|
||
|
!
|
||
|
! three_e_3_idx_cycle_1_bi_ort(m,j,i) = <mji|-L|jim>
|
||
|
!
|
||
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||
|
!
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
integer :: i, j, m
|
||
|
double precision :: integral, wall1, wall0
|
||
|
|
||
|
three_e_3_idx_cycle_1_bi_ort = 0.d0
|
||
|
print *, ' Providing the three_e_3_idx_cycle_1_bi_ort ...'
|
||
|
call wall_time(wall0)
|
||
|
|
||
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||
|
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP DEFAULT (NONE) &
|
||
|
!$OMP PRIVATE (i,j,m,integral) &
|
||
|
!$OMP SHARED (mo_num,three_e_3_idx_cycle_1_bi_ort)
|
||
|
!$OMP DO SCHEDULE (dynamic)
|
||
|
do i = 1, mo_num
|
||
|
do j = 1, mo_num
|
||
|
do m = j, mo_num
|
||
|
call give_integrals_3_body_bi_ort(m, j, i, j, i, m, integral)
|
||
|
three_e_3_idx_cycle_1_bi_ort(m,j,i) = -1.d0 * integral
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
do i = 1, mo_num
|
||
|
do j = 1, mo_num
|
||
|
do m = 1, j
|
||
|
three_e_3_idx_cycle_1_bi_ort(m,j,i) = three_e_3_idx_cycle_1_bi_ort(j,m,i)
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
call wall_time(wall1)
|
||
|
print *, ' wall time for three_e_3_idx_cycle_1_bi_ort', wall1 - wall0
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
! ---
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, three_e_3_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num)]
|
||
|
|
||
|
BEGIN_DOC
|
||
|
!
|
||
|
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the second cyclic permutation
|
||
|
!
|
||
|
! three_e_3_idx_direct_bi_ort(m,j,i) = <mji|-L|imj>
|
||
|
!
|
||
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||
|
!
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
integer :: i, j, m
|
||
|
double precision :: integral, wall1, wall0
|
||
|
|
||
|
three_e_3_idx_cycle_2_bi_ort = 0.d0
|
||
|
print *, ' Providing the three_e_3_idx_cycle_2_bi_ort ...'
|
||
|
call wall_time(wall0)
|
||
|
|
||
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||
|
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP DEFAULT (NONE) &
|
||
|
!$OMP PRIVATE (i,j,m,integral) &
|
||
|
!$OMP SHARED (mo_num,three_e_3_idx_cycle_2_bi_ort)
|
||
|
!$OMP DO SCHEDULE (dynamic)
|
||
|
do i = 1, mo_num
|
||
|
do j = 1, mo_num
|
||
|
do m = j, mo_num
|
||
|
call give_integrals_3_body_bi_ort(m, j, i, i, m, j, integral)
|
||
|
three_e_3_idx_cycle_2_bi_ort(m,j,i) = -1.d0 * integral
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
do i = 1, mo_num
|
||
|
do j = 1, mo_num
|
||
|
do m = 1, j
|
||
|
three_e_3_idx_cycle_2_bi_ort(m,j,i) = three_e_3_idx_cycle_2_bi_ort(j,m,i)
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
call wall_time(wall1)
|
||
|
print *, ' wall time for three_e_3_idx_cycle_2_bi_ort', wall1 - wall0
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
! ---
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, three_e_3_idx_exch23_bi_ort, (mo_num, mo_num, mo_num)]
|
||
|
|
||
|
BEGIN_DOC
|
||
|
!
|
||
|
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the permutations of particle 2 and 3
|
||
|
!
|
||
|
! three_e_3_idx_exch23_bi_ort(m,j,i) = <mji|-L|jmi>
|
||
|
!
|
||
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||
|
!
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
integer :: i, j, m
|
||
|
double precision :: integral, wall1, wall0
|
||
|
|
||
|
three_e_3_idx_exch23_bi_ort = 0.d0
|
||
|
print*,'Providing the three_e_3_idx_exch23_bi_ort ...'
|
||
|
call wall_time(wall0)
|
||
|
|
||
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||
|
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP DEFAULT (NONE) &
|
||
|
!$OMP PRIVATE (i,j,m,integral) &
|
||
|
!$OMP SHARED (mo_num,three_e_3_idx_exch23_bi_ort)
|
||
|
!$OMP DO SCHEDULE (dynamic)
|
||
|
do i = 1, mo_num
|
||
|
do j = 1, mo_num
|
||
|
do m = j, mo_num
|
||
|
call give_integrals_3_body_bi_ort(m, j, i, j, m, i, integral)
|
||
|
three_e_3_idx_exch23_bi_ort(m,j,i) = -1.d0 * integral
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
do i = 1, mo_num
|
||
|
do j = 1, mo_num
|
||
|
do m = 1, j
|
||
|
three_e_3_idx_exch23_bi_ort(m,j,i) = three_e_3_idx_exch23_bi_ort(j,m,i)
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
call wall_time(wall1)
|
||
|
print *, ' wall time for three_e_3_idx_exch23_bi_ort', wall1 - wall0
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
! ---
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, three_e_3_idx_exch13_bi_ort, (mo_num, mo_num, mo_num)]
|
||
|
|
||
|
BEGIN_DOC
|
||
|
!
|
||
|
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the permutations of particle 1 and 3
|
||
|
!
|
||
|
! three_e_3_idx_exch13_bi_ort(m,j,i) = <mji|-L|ijm>
|
||
|
!
|
||
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||
|
!
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
integer :: i,j,m
|
||
|
double precision :: integral, wall1, wall0
|
||
|
|
||
|
three_e_3_idx_exch13_bi_ort = 0.d0
|
||
|
print *, ' Providing the three_e_3_idx_exch13_bi_ort ...'
|
||
|
call wall_time(wall0)
|
||
|
|
||
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||
|
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP DEFAULT (NONE) &
|
||
|
!$OMP PRIVATE (i,j,m,integral) &
|
||
|
!$OMP SHARED (mo_num,three_e_3_idx_exch13_bi_ort)
|
||
|
!$OMP DO SCHEDULE (dynamic)
|
||
|
do i = 1, mo_num
|
||
|
do j = 1, mo_num
|
||
|
do m = j, mo_num
|
||
|
call give_integrals_3_body_bi_ort(m, j, i, i, j, m,integral)
|
||
|
three_e_3_idx_exch13_bi_ort(m,j,i) = -1.d0 * integral
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
do i = 1, mo_num
|
||
|
do j = 1, mo_num
|
||
|
do m = 1, j
|
||
|
three_e_3_idx_exch13_bi_ort(m,j,i) = three_e_3_idx_exch13_bi_ort(j,m,i)
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
call wall_time(wall1)
|
||
|
print *, ' wall time for three_e_3_idx_exch13_bi_ort', wall1 - wall0
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
! ---
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, three_e_3_idx_exch12_bi_ort, (mo_num, mo_num, mo_num)]
|
||
|
|
||
|
BEGIN_DOC
|
||
|
!
|
||
|
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the permutations of particle 1 and 2
|
||
|
!
|
||
|
! three_e_3_idx_exch12_bi_ort(m,j,i) = <mji|-L|mij>
|
||
|
!
|
||
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||
|
!
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
integer :: i, j, m
|
||
|
double precision :: integral, wall1, wall0
|
||
|
|
||
|
three_e_3_idx_exch12_bi_ort = 0.d0
|
||
|
print *, ' Providing the three_e_3_idx_exch12_bi_ort ...'
|
||
|
call wall_time(wall0)
|
||
|
|
||
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||
|
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP DEFAULT (NONE) &
|
||
|
!$OMP PRIVATE (i,j,m,integral) &
|
||
|
!$OMP SHARED (mo_num,three_e_3_idx_exch12_bi_ort)
|
||
|
!$OMP DO SCHEDULE (dynamic)
|
||
|
do i = 1, mo_num
|
||
|
do j = 1, mo_num
|
||
|
do m = 1, mo_num
|
||
|
call give_integrals_3_body_bi_ort(m, j, i, m, i, j, integral)
|
||
|
three_e_3_idx_exch12_bi_ort(m,j,i) = -1.d0 * integral
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
call wall_time(wall1)
|
||
|
print *, ' wall time for three_e_3_idx_exch12_bi_ort', wall1 - wall0
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
! ---
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, three_e_3_idx_exch12_bi_ort_new, (mo_num, mo_num, mo_num)]
|
||
|
|
||
|
BEGIN_DOC
|
||
|
!
|
||
|
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the permutations of particle 1 and 2
|
||
|
!
|
||
|
! three_e_3_idx_exch12_bi_ort_new(m,j,i) = <mji|-L|mij>
|
||
|
!
|
||
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||
|
!
|
||
|
END_DOC
|
||
|
|
||
|
implicit none
|
||
|
integer :: i, j, m
|
||
|
double precision :: integral, wall1, wall0
|
||
|
|
||
|
three_e_3_idx_exch12_bi_ort_new = 0.d0
|
||
|
print *, ' Providing the three_e_3_idx_exch12_bi_ort_new ...'
|
||
|
call wall_time(wall0)
|
||
|
|
||
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||
|
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP DEFAULT (NONE) &
|
||
|
!$OMP PRIVATE (i,j,m,integral) &
|
||
|
!$OMP SHARED (mo_num,three_e_3_idx_exch12_bi_ort_new)
|
||
|
!$OMP DO SCHEDULE (dynamic)
|
||
|
do i = 1, mo_num
|
||
|
do j = 1, mo_num
|
||
|
do m = j, mo_num
|
||
|
call give_integrals_3_body_bi_ort(m, j, i, m, i, j, integral)
|
||
|
three_e_3_idx_exch12_bi_ort_new(m,j,i) = -1.d0 * integral
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
do i = 1, mo_num
|
||
|
do j = 1, mo_num
|
||
|
do m = 1, j
|
||
|
three_e_3_idx_exch12_bi_ort_new(m,j,i) = three_e_3_idx_exch12_bi_ort_new(j,m,i)
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
call wall_time(wall1)
|
||
|
print *, ' wall time for three_e_3_idx_exch12_bi_ort_new', wall1 - wall0
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
! ---
|
||
|
|