mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-07 22:53:52 +01:00
442 lines
12 KiB
Fortran
442 lines
12 KiB
Fortran
|
! Rotation matrix
|
||
|
|
||
|
! *Build a rotation matrix from an antisymmetric matrix*
|
||
|
|
||
|
! Compute a rotation matrix $\textbf{R}$ from an antisymmetric matrix $$\textbf{A}$$ such as :
|
||
|
! $$
|
||
|
! \textbf{R}=\exp(\textbf{A})
|
||
|
! $$
|
||
|
|
||
|
! So :
|
||
|
! \begin{align*}
|
||
|
! \textbf{R}=& \exp(\textbf{A}) \\
|
||
|
! =& \sum_k^{\infty} \frac{1}{k!}\textbf{A}^k \\
|
||
|
! =& \textbf{W} \cdot \cos(\tau) \cdot \textbf{W}^{\dagger} + \textbf{W} \cdot \tau^{-1} \cdot \sin(\tau) \cdot \textbf{W}^{\dagger} \cdot \textbf{A}
|
||
|
! \end{align*}
|
||
|
|
||
|
! With :
|
||
|
! $\textbf{W}$ : eigenvectors of $\textbf{A}^2$
|
||
|
! $\tau$ : $\sqrt{-x}$
|
||
|
! $x$ : eigenvalues of $\textbf{A}^2$
|
||
|
|
||
|
! Input:
|
||
|
! | A(n,n) | double precision | antisymmetric matrix |
|
||
|
! | n | integer | number of columns of the A matrix |
|
||
|
! | LDA | integer | specifies the leading dimension of A, must be at least max(1,n) |
|
||
|
! | LDR | integer | specifies the leading dimension of R, must be at least max(1,n) |
|
||
|
|
||
|
! Output:
|
||
|
! | R(n,n) | double precision | Rotation matrix |
|
||
|
! | info | integer | if info = 0, the execution is successful |
|
||
|
! | | | if info = k, the k-th parameter has an illegal value |
|
||
|
! | | | if info = -k, the algorithm failed |
|
||
|
|
||
|
! Internal:
|
||
|
! | B(n,n) | double precision | B = A.A |
|
||
|
! | work(lwork,n) | double precision | work matrix for dysev, dimension max(1,lwork) |
|
||
|
! | lwork | integer | dimension of the syev work array >= max(1, 3n-1) |
|
||
|
! | W(n,n) | double precision | eigenvectors of B |
|
||
|
! | e_val(n) | double precision | eigenvalues of B |
|
||
|
! | m_diag(n,n) | double precision | diagonal matrix with the eigenvalues of B |
|
||
|
! | cos_tau(n,n) | double precision | diagonal matrix with cos(tau) values |
|
||
|
! | sin_tau(n,n) | double precision | diagonal matrix with sin cos(tau) values |
|
||
|
! | tau_m1(n,n) | double precision | diagonal matrix with (tau)^-1 values |
|
||
|
! | part_1(n,n) | double precision | matrix W.cos_tau.W^t |
|
||
|
! | part_1a(n,n) | double precision | matrix cos_tau.W^t |
|
||
|
! | part_2(n,n) | double precision | matrix W.tau_m1.sin_tau.W^t.A |
|
||
|
! | part_2a(n,n) | double precision | matrix W^t.A |
|
||
|
! | part_2b(n,n) | double precision | matrix sin_tau.W^t.A |
|
||
|
! | part_2c(n,n) | double precision | matrix tau_m1.sin_tau.W^t.A |
|
||
|
! | RR_t(n,n) | double precision | R.R^t must be equal to the identity<=> R.R^t-1=0 <=> norm = 0 |
|
||
|
! | norm | integer | norm of R.R^t-1, must be equal to 0 |
|
||
|
! | i,j | integer | indexes |
|
||
|
|
||
|
! Functions:
|
||
|
! | dnrm2 | double precision | Lapack function, compute the norm of a matrix |
|
||
|
! | disnan | logical | Lapack function, check if an element is NaN |
|
||
|
|
||
|
|
||
|
|
||
|
subroutine rotation_matrix(A,LDA,R,LDR,n,info,enforce_step_cancellation)
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
!BEGIN_DOC
|
||
|
! Rotation matrix to rotate the molecular orbitals.
|
||
|
! If the rotation is too large the transformation is not unitary and must be cancelled.
|
||
|
!END_DOC
|
||
|
|
||
|
include 'pi.h'
|
||
|
|
||
|
! Variables
|
||
|
|
||
|
! in
|
||
|
integer, intent(in) :: n,LDA,LDR
|
||
|
double precision, intent(inout) :: A(LDA,n)
|
||
|
|
||
|
! out
|
||
|
double precision, intent(out) :: R(LDR,n)
|
||
|
integer, intent(out) :: info
|
||
|
logical, intent(out) :: enforce_step_cancellation
|
||
|
|
||
|
! internal
|
||
|
double precision, allocatable :: B(:,:)
|
||
|
double precision, allocatable :: work(:,:)
|
||
|
double precision, allocatable :: W(:,:), e_val(:)
|
||
|
double precision, allocatable :: m_diag(:,:),cos_tau(:,:),sin_tau(:,:),tau_m1(:,:)
|
||
|
double precision, allocatable :: part_1(:,:),part_1a(:,:)
|
||
|
double precision, allocatable :: part_2(:,:),part_2a(:,:),part_2b(:,:),part_2c(:,:)
|
||
|
double precision, allocatable :: RR_t(:,:)
|
||
|
integer :: i,j
|
||
|
integer :: info2, lwork ! for dsyev
|
||
|
double precision :: norm, max_elem, max_elem_A, t1,t2,t3
|
||
|
|
||
|
! function
|
||
|
double precision :: dnrm2
|
||
|
logical :: disnan
|
||
|
|
||
|
print*,''
|
||
|
print*,'---rotation_matrix---'
|
||
|
|
||
|
call wall_time(t1)
|
||
|
|
||
|
! Allocation
|
||
|
allocate(B(n,n))
|
||
|
allocate(m_diag(n,n),cos_tau(n,n),sin_tau(n,n),tau_m1(n,n))
|
||
|
allocate(W(n,n),e_val(n))
|
||
|
allocate(part_1(n,n),part_1a(n,n))
|
||
|
allocate(part_2(n,n),part_2a(n,n),part_2b(n,n),part_2c(n,n))
|
||
|
allocate(RR_t(n,n))
|
||
|
|
||
|
! Pre-conditions
|
||
|
|
||
|
! Initialization
|
||
|
info=0
|
||
|
enforce_step_cancellation = .False.
|
||
|
|
||
|
! Size of matrix A must be at least 1 by 1
|
||
|
if (n<1) then
|
||
|
info = 3
|
||
|
print*, 'WARNING: invalid parameter 5'
|
||
|
print*, 'n<1'
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
! Leading dimension of A must be >= n
|
||
|
if (LDA < n) then
|
||
|
info = 25
|
||
|
print*, 'WARNING: invalid parameter 2 or 5'
|
||
|
print*, 'LDA < n'
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
! Leading dimension of A must be >= n
|
||
|
if (LDR < n) then
|
||
|
info = 4
|
||
|
print*, 'WARNING: invalid parameter 4'
|
||
|
print*, 'LDR < n'
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
! Matrix elements of A must by non-NaN
|
||
|
do j = 1, n
|
||
|
do i = 1, n
|
||
|
if (disnan(A(i,j))) then
|
||
|
info=1
|
||
|
print*, 'WARNING: invalid parameter 1'
|
||
|
print*, 'NaN element in A matrix'
|
||
|
return
|
||
|
endif
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
do i = 1, n
|
||
|
if (A(i,i) /= 0d0) then
|
||
|
print*, 'WARNING: matrix A is not antisymmetric'
|
||
|
print*, 'Non 0 element on the diagonal', i, A(i,i)
|
||
|
call ABORT
|
||
|
endif
|
||
|
enddo
|
||
|
|
||
|
do j = 1, n
|
||
|
do i = 1, n
|
||
|
if (A(i,j)+A(j,i)>1d-16) then
|
||
|
print*, 'WANRING: matrix A is not antisymmetric'
|
||
|
print*, 'A(i,j) /= - A(j,i):', i,j,A(i,j), A(j,i)
|
||
|
print*, 'diff:', A(i,j)+A(j,i)
|
||
|
call ABORT
|
||
|
endif
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
! Fix for too big elements ! bad idea better to cancel if the error is too big
|
||
|
!do j = 1, n
|
||
|
! do i = 1, n
|
||
|
! A(i,j) = mod(A(i,j),2d0*pi)
|
||
|
! if (dabs(A(i,j)) > pi) then
|
||
|
! A(i,j) = 0d0
|
||
|
! endif
|
||
|
! enddo
|
||
|
!enddo
|
||
|
|
||
|
max_elem_A = 0d0
|
||
|
do j = 1, n
|
||
|
do i = 1, n
|
||
|
if (ABS(A(i,j)) > ABS(max_elem_A)) then
|
||
|
max_elem_A = A(i,j)
|
||
|
endif
|
||
|
enddo
|
||
|
enddo
|
||
|
!print*,'max element in A', max_elem_A
|
||
|
|
||
|
if (ABS(max_elem_A) > 2 * pi) then
|
||
|
print*,''
|
||
|
print*,'WARNING: ABS(max_elem_A) > 2 pi '
|
||
|
print*,''
|
||
|
endif
|
||
|
|
||
|
! B=A.A
|
||
|
! - Calculation of the matrix $\textbf{B} = \textbf{A}^2$
|
||
|
! - Diagonalization of $\textbf{B}$
|
||
|
! W, the eigenvectors
|
||
|
! e_val, the eigenvalues
|
||
|
|
||
|
|
||
|
! Compute B=A.A
|
||
|
|
||
|
call dgemm('N','N',n,n,n,1d0,A,size(A,1),A,size(A,1),0d0,B,size(B,1))
|
||
|
|
||
|
! Copy B in W, diagonalization will put the eigenvectors in W
|
||
|
W=B
|
||
|
|
||
|
! Diagonalization of B
|
||
|
! Eigenvalues -> e_val
|
||
|
! Eigenvectors -> W
|
||
|
lwork = 3*n-1
|
||
|
allocate(work(lwork,n))
|
||
|
|
||
|
!print*,'Starting diagonalization ...'
|
||
|
|
||
|
call dsyev('V','U',n,W,size(W,1),e_val,work,lwork,info2)
|
||
|
|
||
|
deallocate(work)
|
||
|
|
||
|
if (info2 < 0) then
|
||
|
print*, 'WARNING: error in the diagonalization'
|
||
|
print*, 'Illegal value of the ', info2,'-th parameter'
|
||
|
elseif (info2 >0) then
|
||
|
print*, "WARNING: Diagonalization failed to converge"
|
||
|
endif
|
||
|
|
||
|
! Tau^-1, cos(tau), sin(tau)
|
||
|
! $$\tau = \sqrt{-x}$$
|
||
|
! - Calculation of $\cos(\tau)$ $\Leftrightarrow$ $\cos(\sqrt{-x})$
|
||
|
! - Calculation of $\sin(\tau)$ $\Leftrightarrow$ $\sin(\sqrt{-x})$
|
||
|
! - Calculation of $\tau^{-1}$ $\Leftrightarrow$ $(\sqrt{-x})^{-1}$
|
||
|
! These matrices are diagonals
|
||
|
|
||
|
! Diagonal matrix m_diag
|
||
|
do j = 1, n
|
||
|
if (e_val(j) >= -1d-12) then !0.d0) then !!! e_avl(i) must be < -1d-12 to avoid numerical problems
|
||
|
e_val(j) = 0.d0
|
||
|
else
|
||
|
e_val(j) = - e_val(j)
|
||
|
endif
|
||
|
enddo
|
||
|
|
||
|
m_diag = 0.d0
|
||
|
do i = 1, n
|
||
|
m_diag(i,i) = e_val(i)
|
||
|
enddo
|
||
|
|
||
|
! cos_tau
|
||
|
do j = 1, n
|
||
|
do i = 1, n
|
||
|
if (i==j) then
|
||
|
cos_tau(i,j) = dcos(dsqrt(e_val(i)))
|
||
|
else
|
||
|
cos_tau(i,j) = 0d0
|
||
|
endif
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
! sin_tau
|
||
|
do j = 1, n
|
||
|
do i = 1, n
|
||
|
if (i==j) then
|
||
|
sin_tau(i,j) = dsin(dsqrt(e_val(i)))
|
||
|
else
|
||
|
sin_tau(i,j) = 0d0
|
||
|
endif
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
! Debug, display the cos_tau and sin_tau matrix
|
||
|
!if (debug) then
|
||
|
! print*, 'cos_tau'
|
||
|
! do i = 1, n
|
||
|
! print*, cos_tau(i,:)
|
||
|
! enddo
|
||
|
! print*, 'sin_tau'
|
||
|
! do i = 1, n
|
||
|
! print*, sin_tau(i,:)
|
||
|
! enddo
|
||
|
!endif
|
||
|
|
||
|
! tau^-1
|
||
|
do j = 1, n
|
||
|
do i = 1, n
|
||
|
if ((i==j) .and. (e_val(i) > 1d-16)) then!0d0)) then !!! Convergence problem can come from here if the threshold is too big/small
|
||
|
tau_m1(i,j) = 1d0/(dsqrt(e_val(i)))
|
||
|
else
|
||
|
tau_m1(i,j) = 0d0
|
||
|
endif
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
max_elem = 0d0
|
||
|
do i = 1, n
|
||
|
if (ABS(tau_m1(i,i)) > ABS(max_elem)) then
|
||
|
max_elem = tau_m1(i,i)
|
||
|
endif
|
||
|
enddo
|
||
|
!print*,'max elem tau^-1:', max_elem
|
||
|
|
||
|
! Debug
|
||
|
!print*,'eigenvalues:'
|
||
|
!do i = 1, n
|
||
|
! print*, e_val(i)
|
||
|
!enddo
|
||
|
|
||
|
!Debug, display tau^-1
|
||
|
!if (debug) then
|
||
|
! print*, 'tau^-1'
|
||
|
! do i = 1, n
|
||
|
! print*,tau_m1(i,:)
|
||
|
! enddo
|
||
|
!endif
|
||
|
|
||
|
! Rotation matrix
|
||
|
! \begin{align*}
|
||
|
! \textbf{R} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger} + \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
|
||
|
! \end{align*}
|
||
|
! \begin{align*}
|
||
|
! \textbf{Part1} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger}
|
||
|
! \end{align*}
|
||
|
! \begin{align*}
|
||
|
! \textbf{Part2} = \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
|
||
|
! \end{align*}
|
||
|
|
||
|
! First:
|
||
|
! part_1 = dgemm(W, dgemm(cos_tau, W^t))
|
||
|
! part_1a = dgemm(cos_tau, W^t)
|
||
|
! part_1 = dgemm(W, part_1a)
|
||
|
! And:
|
||
|
! part_2= dgemm(W, dgemm(tau_m1, dgemm(sin_tau, dgemm(W^t, A))))
|
||
|
! part_2a = dgemm(W^t, A)
|
||
|
! part_2b = dgemm(sin_tau, part_2a)
|
||
|
! part_2c = dgemm(tau_m1, part_2b)
|
||
|
! part_2 = dgemm(W, part_2c)
|
||
|
! Finally:
|
||
|
! Rotation matrix, R = part_1+part_2
|
||
|
|
||
|
! If $R$ is a rotation matrix:
|
||
|
! $R.R^T=R^T.R=\textbf{1}$
|
||
|
|
||
|
! part_1
|
||
|
call dgemm('N','T',n,n,n,1d0,cos_tau,size(cos_tau,1),W,size(W,1),0d0,part_1a,size(part_1a,1))
|
||
|
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_1a,size(part_1a,1),0d0,part_1,size(part_1,1))
|
||
|
|
||
|
! part_2
|
||
|
call dgemm('T','N',n,n,n,1d0,W,size(W,1),A,size(A,1),0d0,part_2a,size(part_2a,1))
|
||
|
call dgemm('N','N',n,n,n,1d0,sin_tau,size(sin_tau,1),part_2a,size(part_2a,1),0d0,part_2b,size(part_2b,1))
|
||
|
call dgemm('N','N',n,n,n,1d0,tau_m1,size(tau_m1,1),part_2b,size(part_2b,1),0d0,part_2c,size(part_2c,1))
|
||
|
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_2c,size(part_2c,1),0d0,part_2,size(part_2,1))
|
||
|
|
||
|
! Rotation matrix R
|
||
|
R = part_1 + part_2
|
||
|
|
||
|
! Matrix check
|
||
|
! R.R^t and R^t.R must be equal to identity matrix
|
||
|
do j = 1, n
|
||
|
do i=1,n
|
||
|
if (i==j) then
|
||
|
RR_t(i,j) = 1d0
|
||
|
else
|
||
|
RR_t(i,j) = 0d0
|
||
|
endif
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
call dgemm('N','T',n,n,n,1d0,R,size(R,1),R,size(R,1),-1d0,RR_t,size(RR_t,1))
|
||
|
|
||
|
norm = dnrm2(n*n,RR_t,1)
|
||
|
!print*, 'Rotation matrix check, norm R.R^T = ', norm
|
||
|
|
||
|
! Debug
|
||
|
!if (debug) then
|
||
|
! print*, 'RR_t'
|
||
|
! do i = 1, n
|
||
|
! print*, RR_t(i,:)
|
||
|
! enddo
|
||
|
!endif
|
||
|
|
||
|
! Post conditions
|
||
|
|
||
|
! Check if R.R^T=1
|
||
|
max_elem = 0d0
|
||
|
do j = 1, n
|
||
|
do i = 1, n
|
||
|
if (ABS(RR_t(i,j)) > ABS(max_elem)) then
|
||
|
max_elem = RR_t(i,j)
|
||
|
endif
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
print*, 'Max error in R.R^T:', max_elem
|
||
|
!print*, 'e_val(1):', e_val(1)
|
||
|
!print*, 'e_val(n):', e_val(n)
|
||
|
!print*, 'max elem in A:', max_elem_A
|
||
|
|
||
|
if (ABS(max_elem) > 1d-12) then
|
||
|
print*, 'WARNING: max error in R.R^T > 1d-12'
|
||
|
print*, 'Enforce the step cancellation'
|
||
|
enforce_step_cancellation = .True.
|
||
|
endif
|
||
|
|
||
|
! Matrix elements of R must by non-NaN
|
||
|
do j = 1,n
|
||
|
do i = 1,LDR
|
||
|
if (disnan(R(i,j))) then
|
||
|
info = 666
|
||
|
print*, 'NaN in rotation matrix'
|
||
|
call ABORT
|
||
|
endif
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
! Display
|
||
|
!if (debug) then
|
||
|
! print*,'Rotation matrix :'
|
||
|
! do i = 1, n
|
||
|
! write(*,'(100(F10.5))') R(i,:)
|
||
|
! enddo
|
||
|
!endif
|
||
|
|
||
|
! Deallocation, end
|
||
|
|
||
|
deallocate(B)
|
||
|
deallocate(m_diag,cos_tau,sin_tau,tau_m1)
|
||
|
deallocate(W,e_val)
|
||
|
deallocate(part_1,part_1a)
|
||
|
deallocate(part_2,part_2a,part_2b,part_2c)
|
||
|
deallocate(RR_t)
|
||
|
|
||
|
call wall_time(t2)
|
||
|
t3 = t2-t1
|
||
|
print*,'Time in rotation matrix:', t3
|
||
|
|
||
|
print*,'---End rotation_matrix---'
|
||
|
|
||
|
end subroutine
|