10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-08 07:03:52 +01:00
QuantumPackage/src/utils_trust_region/rotation_matrix.irp.f

442 lines
12 KiB
Fortran
Raw Normal View History

2023-04-18 13:01:25 +02:00
! Rotation matrix
! *Build a rotation matrix from an antisymmetric matrix*
! Compute a rotation matrix $\textbf{R}$ from an antisymmetric matrix $$\textbf{A}$$ such as :
! $$
! \textbf{R}=\exp(\textbf{A})
! $$
! So :
! \begin{align*}
! \textbf{R}=& \exp(\textbf{A}) \\
! =& \sum_k^{\infty} \frac{1}{k!}\textbf{A}^k \\
! =& \textbf{W} \cdot \cos(\tau) \cdot \textbf{W}^{\dagger} + \textbf{W} \cdot \tau^{-1} \cdot \sin(\tau) \cdot \textbf{W}^{\dagger} \cdot \textbf{A}
! \end{align*}
! With :
! $\textbf{W}$ : eigenvectors of $\textbf{A}^2$
! $\tau$ : $\sqrt{-x}$
! $x$ : eigenvalues of $\textbf{A}^2$
! Input:
! | A(n,n) | double precision | antisymmetric matrix |
! | n | integer | number of columns of the A matrix |
! | LDA | integer | specifies the leading dimension of A, must be at least max(1,n) |
! | LDR | integer | specifies the leading dimension of R, must be at least max(1,n) |
! Output:
! | R(n,n) | double precision | Rotation matrix |
! | info | integer | if info = 0, the execution is successful |
! | | | if info = k, the k-th parameter has an illegal value |
! | | | if info = -k, the algorithm failed |
! Internal:
! | B(n,n) | double precision | B = A.A |
! | work(lwork,n) | double precision | work matrix for dysev, dimension max(1,lwork) |
! | lwork | integer | dimension of the syev work array >= max(1, 3n-1) |
! | W(n,n) | double precision | eigenvectors of B |
! | e_val(n) | double precision | eigenvalues of B |
! | m_diag(n,n) | double precision | diagonal matrix with the eigenvalues of B |
! | cos_tau(n,n) | double precision | diagonal matrix with cos(tau) values |
! | sin_tau(n,n) | double precision | diagonal matrix with sin cos(tau) values |
! | tau_m1(n,n) | double precision | diagonal matrix with (tau)^-1 values |
! | part_1(n,n) | double precision | matrix W.cos_tau.W^t |
! | part_1a(n,n) | double precision | matrix cos_tau.W^t |
! | part_2(n,n) | double precision | matrix W.tau_m1.sin_tau.W^t.A |
! | part_2a(n,n) | double precision | matrix W^t.A |
! | part_2b(n,n) | double precision | matrix sin_tau.W^t.A |
! | part_2c(n,n) | double precision | matrix tau_m1.sin_tau.W^t.A |
! | RR_t(n,n) | double precision | R.R^t must be equal to the identity<=> R.R^t-1=0 <=> norm = 0 |
! | norm | integer | norm of R.R^t-1, must be equal to 0 |
! | i,j | integer | indexes |
! Functions:
! | dnrm2 | double precision | Lapack function, compute the norm of a matrix |
! | disnan | logical | Lapack function, check if an element is NaN |
subroutine rotation_matrix(A,LDA,R,LDR,n,info,enforce_step_cancellation)
implicit none
!BEGIN_DOC
! Rotation matrix to rotate the molecular orbitals.
! If the rotation is too large the transformation is not unitary and must be cancelled.
!END_DOC
include 'pi.h'
! Variables
! in
integer, intent(in) :: n,LDA,LDR
double precision, intent(inout) :: A(LDA,n)
! out
double precision, intent(out) :: R(LDR,n)
integer, intent(out) :: info
logical, intent(out) :: enforce_step_cancellation
! internal
double precision, allocatable :: B(:,:)
double precision, allocatable :: work(:,:)
double precision, allocatable :: W(:,:), e_val(:)
double precision, allocatable :: m_diag(:,:),cos_tau(:,:),sin_tau(:,:),tau_m1(:,:)
double precision, allocatable :: part_1(:,:),part_1a(:,:)
double precision, allocatable :: part_2(:,:),part_2a(:,:),part_2b(:,:),part_2c(:,:)
double precision, allocatable :: RR_t(:,:)
integer :: i,j
integer :: info2, lwork ! for dsyev
double precision :: norm, max_elem, max_elem_A, t1,t2,t3
! function
double precision :: dnrm2
logical :: disnan
print*,''
print*,'---rotation_matrix---'
call wall_time(t1)
! Allocation
allocate(B(n,n))
allocate(m_diag(n,n),cos_tau(n,n),sin_tau(n,n),tau_m1(n,n))
allocate(W(n,n),e_val(n))
allocate(part_1(n,n),part_1a(n,n))
allocate(part_2(n,n),part_2a(n,n),part_2b(n,n),part_2c(n,n))
allocate(RR_t(n,n))
! Pre-conditions
! Initialization
info=0
enforce_step_cancellation = .False.
! Size of matrix A must be at least 1 by 1
if (n<1) then
info = 3
print*, 'WARNING: invalid parameter 5'
print*, 'n<1'
return
endif
! Leading dimension of A must be >= n
if (LDA < n) then
info = 25
print*, 'WARNING: invalid parameter 2 or 5'
print*, 'LDA < n'
return
endif
! Leading dimension of A must be >= n
if (LDR < n) then
info = 4
print*, 'WARNING: invalid parameter 4'
print*, 'LDR < n'
return
endif
! Matrix elements of A must by non-NaN
do j = 1, n
do i = 1, n
if (disnan(A(i,j))) then
info=1
print*, 'WARNING: invalid parameter 1'
print*, 'NaN element in A matrix'
return
endif
enddo
enddo
do i = 1, n
if (A(i,i) /= 0d0) then
print*, 'WARNING: matrix A is not antisymmetric'
print*, 'Non 0 element on the diagonal', i, A(i,i)
call ABORT
endif
enddo
do j = 1, n
do i = 1, n
if (A(i,j)+A(j,i)>1d-16) then
print*, 'WANRING: matrix A is not antisymmetric'
print*, 'A(i,j) /= - A(j,i):', i,j,A(i,j), A(j,i)
print*, 'diff:', A(i,j)+A(j,i)
call ABORT
endif
enddo
enddo
! Fix for too big elements ! bad idea better to cancel if the error is too big
!do j = 1, n
! do i = 1, n
! A(i,j) = mod(A(i,j),2d0*pi)
! if (dabs(A(i,j)) > pi) then
! A(i,j) = 0d0
! endif
! enddo
!enddo
max_elem_A = 0d0
do j = 1, n
do i = 1, n
if (ABS(A(i,j)) > ABS(max_elem_A)) then
max_elem_A = A(i,j)
endif
enddo
enddo
!print*,'max element in A', max_elem_A
if (ABS(max_elem_A) > 2 * pi) then
print*,''
print*,'WARNING: ABS(max_elem_A) > 2 pi '
print*,''
endif
! B=A.A
! - Calculation of the matrix $\textbf{B} = \textbf{A}^2$
! - Diagonalization of $\textbf{B}$
! W, the eigenvectors
! e_val, the eigenvalues
! Compute B=A.A
call dgemm('N','N',n,n,n,1d0,A,size(A,1),A,size(A,1),0d0,B,size(B,1))
! Copy B in W, diagonalization will put the eigenvectors in W
W=B
! Diagonalization of B
! Eigenvalues -> e_val
! Eigenvectors -> W
lwork = 3*n-1
allocate(work(lwork,n))
!print*,'Starting diagonalization ...'
call dsyev('V','U',n,W,size(W,1),e_val,work,lwork,info2)
deallocate(work)
if (info2 < 0) then
print*, 'WARNING: error in the diagonalization'
print*, 'Illegal value of the ', info2,'-th parameter'
elseif (info2 >0) then
print*, "WARNING: Diagonalization failed to converge"
endif
! Tau^-1, cos(tau), sin(tau)
! $$\tau = \sqrt{-x}$$
! - Calculation of $\cos(\tau)$ $\Leftrightarrow$ $\cos(\sqrt{-x})$
! - Calculation of $\sin(\tau)$ $\Leftrightarrow$ $\sin(\sqrt{-x})$
! - Calculation of $\tau^{-1}$ $\Leftrightarrow$ $(\sqrt{-x})^{-1}$
! These matrices are diagonals
! Diagonal matrix m_diag
do j = 1, n
if (e_val(j) >= -1d-12) then !0.d0) then !!! e_avl(i) must be < -1d-12 to avoid numerical problems
e_val(j) = 0.d0
else
e_val(j) = - e_val(j)
endif
enddo
m_diag = 0.d0
do i = 1, n
m_diag(i,i) = e_val(i)
enddo
! cos_tau
do j = 1, n
do i = 1, n
if (i==j) then
cos_tau(i,j) = dcos(dsqrt(e_val(i)))
else
cos_tau(i,j) = 0d0
endif
enddo
enddo
! sin_tau
do j = 1, n
do i = 1, n
if (i==j) then
sin_tau(i,j) = dsin(dsqrt(e_val(i)))
else
sin_tau(i,j) = 0d0
endif
enddo
enddo
! Debug, display the cos_tau and sin_tau matrix
!if (debug) then
! print*, 'cos_tau'
! do i = 1, n
! print*, cos_tau(i,:)
! enddo
! print*, 'sin_tau'
! do i = 1, n
! print*, sin_tau(i,:)
! enddo
!endif
! tau^-1
do j = 1, n
do i = 1, n
if ((i==j) .and. (e_val(i) > 1d-16)) then!0d0)) then !!! Convergence problem can come from here if the threshold is too big/small
tau_m1(i,j) = 1d0/(dsqrt(e_val(i)))
else
tau_m1(i,j) = 0d0
endif
enddo
enddo
max_elem = 0d0
do i = 1, n
if (ABS(tau_m1(i,i)) > ABS(max_elem)) then
max_elem = tau_m1(i,i)
endif
enddo
!print*,'max elem tau^-1:', max_elem
! Debug
!print*,'eigenvalues:'
!do i = 1, n
! print*, e_val(i)
!enddo
!Debug, display tau^-1
!if (debug) then
! print*, 'tau^-1'
! do i = 1, n
! print*,tau_m1(i,:)
! enddo
!endif
! Rotation matrix
! \begin{align*}
! \textbf{R} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger} + \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
! \end{align*}
! \begin{align*}
! \textbf{Part1} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger}
! \end{align*}
! \begin{align*}
! \textbf{Part2} = \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
! \end{align*}
! First:
! part_1 = dgemm(W, dgemm(cos_tau, W^t))
! part_1a = dgemm(cos_tau, W^t)
! part_1 = dgemm(W, part_1a)
! And:
! part_2= dgemm(W, dgemm(tau_m1, dgemm(sin_tau, dgemm(W^t, A))))
! part_2a = dgemm(W^t, A)
! part_2b = dgemm(sin_tau, part_2a)
! part_2c = dgemm(tau_m1, part_2b)
! part_2 = dgemm(W, part_2c)
! Finally:
! Rotation matrix, R = part_1+part_2
! If $R$ is a rotation matrix:
! $R.R^T=R^T.R=\textbf{1}$
! part_1
call dgemm('N','T',n,n,n,1d0,cos_tau,size(cos_tau,1),W,size(W,1),0d0,part_1a,size(part_1a,1))
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_1a,size(part_1a,1),0d0,part_1,size(part_1,1))
! part_2
call dgemm('T','N',n,n,n,1d0,W,size(W,1),A,size(A,1),0d0,part_2a,size(part_2a,1))
call dgemm('N','N',n,n,n,1d0,sin_tau,size(sin_tau,1),part_2a,size(part_2a,1),0d0,part_2b,size(part_2b,1))
call dgemm('N','N',n,n,n,1d0,tau_m1,size(tau_m1,1),part_2b,size(part_2b,1),0d0,part_2c,size(part_2c,1))
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_2c,size(part_2c,1),0d0,part_2,size(part_2,1))
! Rotation matrix R
R = part_1 + part_2
! Matrix check
! R.R^t and R^t.R must be equal to identity matrix
do j = 1, n
do i=1,n
if (i==j) then
RR_t(i,j) = 1d0
else
RR_t(i,j) = 0d0
endif
enddo
enddo
call dgemm('N','T',n,n,n,1d0,R,size(R,1),R,size(R,1),-1d0,RR_t,size(RR_t,1))
norm = dnrm2(n*n,RR_t,1)
!print*, 'Rotation matrix check, norm R.R^T = ', norm
! Debug
!if (debug) then
! print*, 'RR_t'
! do i = 1, n
! print*, RR_t(i,:)
! enddo
!endif
! Post conditions
! Check if R.R^T=1
max_elem = 0d0
do j = 1, n
do i = 1, n
if (ABS(RR_t(i,j)) > ABS(max_elem)) then
max_elem = RR_t(i,j)
endif
enddo
enddo
print*, 'Max error in R.R^T:', max_elem
!print*, 'e_val(1):', e_val(1)
!print*, 'e_val(n):', e_val(n)
!print*, 'max elem in A:', max_elem_A
if (ABS(max_elem) > 1d-12) then
print*, 'WARNING: max error in R.R^T > 1d-12'
print*, 'Enforce the step cancellation'
enforce_step_cancellation = .True.
endif
! Matrix elements of R must by non-NaN
do j = 1,n
do i = 1,LDR
if (disnan(R(i,j))) then
info = 666
print*, 'NaN in rotation matrix'
call ABORT
endif
enddo
enddo
! Display
!if (debug) then
! print*,'Rotation matrix :'
! do i = 1, n
! write(*,'(100(F10.5))') R(i,:)
! enddo
!endif
! Deallocation, end
deallocate(B)
deallocate(m_diag,cos_tau,sin_tau,tau_m1)
deallocate(W,e_val)
deallocate(part_1,part_1a)
deallocate(part_2,part_2a,part_2b,part_2c)
deallocate(RR_t)
call wall_time(t2)
t3 = t2-t1
print*,'Time in rotation matrix:', t3
print*,'---End rotation_matrix---'
end subroutine