mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-07 22:53:52 +01:00
448 lines
25 KiB
Fortran
448 lines
25 KiB
Fortran
|
|
||
|
|
||
|
BEGIN_PROVIDER[double precision, energy_x_pbe, (N_states) ]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! exchange/correlation energy with the short range pbe functional
|
||
|
END_DOC
|
||
|
integer :: istate,i,j,m
|
||
|
double precision :: r(3)
|
||
|
double precision :: mu,weight
|
||
|
double precision, allocatable :: ex(:), ec(:)
|
||
|
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
|
||
|
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
|
||
|
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
|
||
|
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
|
||
|
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
|
||
|
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
|
||
|
|
||
|
|
||
|
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
|
||
|
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
|
||
|
energy_x_pbe = 0.d0
|
||
|
do istate = 1, N_states
|
||
|
do i = 1, n_points_final_grid
|
||
|
r(1) = final_grid_points(1,i)
|
||
|
r(2) = final_grid_points(2,i)
|
||
|
r(3) = final_grid_points(3,i)
|
||
|
weight = final_weight_at_r_vector(i)
|
||
|
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||
|
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||
|
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
||
|
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
||
|
grad_rho_a_2 = 0.d0
|
||
|
grad_rho_b_2 = 0.d0
|
||
|
grad_rho_a_b = 0.d0
|
||
|
do m = 1, 3
|
||
|
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
|
||
|
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
|
||
|
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
|
||
|
enddo
|
||
|
|
||
|
! inputs
|
||
|
call GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||
|
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
||
|
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
||
|
energy_x_pbe += ex * weight
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
BEGIN_PROVIDER[double precision, energy_c_pbe, (N_states) ]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! exchange/correlation energy with the short range pbe functional
|
||
|
END_DOC
|
||
|
integer :: istate,i,j,m
|
||
|
double precision :: r(3)
|
||
|
double precision :: mu,weight
|
||
|
double precision, allocatable :: ex(:), ec(:)
|
||
|
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
|
||
|
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
|
||
|
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
|
||
|
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
|
||
|
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
|
||
|
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
|
||
|
|
||
|
|
||
|
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
|
||
|
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
|
||
|
energy_c_pbe = 0.d0
|
||
|
do istate = 1, N_states
|
||
|
do i = 1, n_points_final_grid
|
||
|
r(1) = final_grid_points(1,i)
|
||
|
r(2) = final_grid_points(2,i)
|
||
|
r(3) = final_grid_points(3,i)
|
||
|
weight = final_weight_at_r_vector(i)
|
||
|
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||
|
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||
|
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
||
|
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
||
|
grad_rho_a_2 = 0.d0
|
||
|
grad_rho_b_2 = 0.d0
|
||
|
grad_rho_a_b = 0.d0
|
||
|
do m = 1, 3
|
||
|
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
|
||
|
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
|
||
|
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
|
||
|
enddo
|
||
|
|
||
|
! inputs
|
||
|
call GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||
|
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
||
|
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
||
|
energy_c_pbe += ec * weight
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
|
||
|
|
||
|
BEGIN_PROVIDER [double precision, potential_x_alpha_ao_pbe,(ao_num,ao_num,N_states)]
|
||
|
&BEGIN_PROVIDER [double precision, potential_x_beta_ao_pbe,(ao_num,ao_num,N_states)]
|
||
|
&BEGIN_PROVIDER [double precision, potential_c_alpha_ao_pbe,(ao_num,ao_num,N_states)]
|
||
|
&BEGIN_PROVIDER [double precision, potential_c_beta_ao_pbe,(ao_num,ao_num,N_states)]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional
|
||
|
END_DOC
|
||
|
integer :: i,j,istate
|
||
|
do istate = 1, n_states
|
||
|
do i = 1, ao_num
|
||
|
do j = 1, ao_num
|
||
|
potential_x_alpha_ao_pbe(j,i,istate) = pot_scal_x_alpha_ao_pbe(j,i,istate) + pot_grad_x_alpha_ao_pbe(j,i,istate) + pot_grad_x_alpha_ao_pbe(i,j,istate)
|
||
|
potential_x_beta_ao_pbe(j,i,istate) = pot_scal_x_beta_ao_pbe(j,i,istate) + pot_grad_x_beta_ao_pbe(j,i,istate) + pot_grad_x_beta_ao_pbe(i,j,istate)
|
||
|
|
||
|
potential_c_alpha_ao_pbe(j,i,istate) = pot_scal_c_alpha_ao_pbe(j,i,istate) + pot_grad_c_alpha_ao_pbe(j,i,istate) + pot_grad_c_alpha_ao_pbe(i,j,istate)
|
||
|
potential_c_beta_ao_pbe(j,i,istate) = pot_scal_c_beta_ao_pbe(j,i,istate) + pot_grad_c_beta_ao_pbe(j,i,istate) + pot_grad_c_beta_ao_pbe(i,j,istate)
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
|
||
|
|
||
|
BEGIN_PROVIDER [double precision, potential_xc_alpha_ao_pbe,(ao_num,ao_num,N_states)]
|
||
|
&BEGIN_PROVIDER [double precision, potential_xc_beta_ao_pbe,(ao_num,ao_num,N_states)]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional
|
||
|
END_DOC
|
||
|
integer :: i,j,istate
|
||
|
do istate = 1, n_states
|
||
|
do i = 1, ao_num
|
||
|
do j = 1, ao_num
|
||
|
potential_xc_alpha_ao_pbe(j,i,istate) = pot_scal_xc_alpha_ao_pbe(j,i,istate) + pot_grad_xc_alpha_ao_pbe(j,i,istate) + pot_grad_xc_alpha_ao_pbe(i,j,istate)
|
||
|
potential_xc_beta_ao_pbe(j,i,istate) = pot_scal_xc_beta_ao_pbe(j,i,istate) + pot_grad_xc_beta_ao_pbe(j,i,istate) + pot_grad_xc_beta_ao_pbe(i,j,istate)
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
|
||
|
BEGIN_PROVIDER[double precision, aos_vc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||
|
&BEGIN_PROVIDER[double precision, aos_vc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||
|
&BEGIN_PROVIDER[double precision, aos_vx_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||
|
&BEGIN_PROVIDER[double precision, aos_vx_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||
|
&BEGIN_PROVIDER[double precision, aos_dvc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||
|
&BEGIN_PROVIDER[double precision, aos_dvc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||
|
&BEGIN_PROVIDER[double precision, aos_dvx_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||
|
&BEGIN_PROVIDER[double precision, aos_dvx_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! aos_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
|
||
|
END_DOC
|
||
|
integer :: istate,i,j,m
|
||
|
double precision :: r(3)
|
||
|
double precision :: mu,weight
|
||
|
double precision, allocatable :: ex(:), ec(:)
|
||
|
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
|
||
|
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
|
||
|
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
|
||
|
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
|
||
|
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
|
||
|
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
|
||
|
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
|
||
|
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
|
||
|
allocate(contrib_grad_xa(3,N_states),contrib_grad_xb(3,N_states),contrib_grad_ca(3,N_states),contrib_grad_cb(3,N_states))
|
||
|
|
||
|
aos_dvc_alpha_pbe_w = 0.d0
|
||
|
aos_dvc_beta_pbe_w = 0.d0
|
||
|
aos_dvx_alpha_pbe_w = 0.d0
|
||
|
aos_dvx_beta_pbe_w = 0.d0
|
||
|
|
||
|
do istate = 1, N_states
|
||
|
do i = 1, n_points_final_grid
|
||
|
r(1) = final_grid_points(1,i)
|
||
|
r(2) = final_grid_points(2,i)
|
||
|
r(3) = final_grid_points(3,i)
|
||
|
weight = final_weight_at_r_vector(i)
|
||
|
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||
|
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||
|
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
||
|
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
||
|
grad_rho_a_2 = 0.d0
|
||
|
grad_rho_b_2 = 0.d0
|
||
|
grad_rho_a_b = 0.d0
|
||
|
do m = 1, 3
|
||
|
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
|
||
|
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
|
||
|
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
|
||
|
enddo
|
||
|
|
||
|
! inputs
|
||
|
call GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||
|
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
||
|
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
||
|
vx_rho_a(istate) *= weight
|
||
|
vc_rho_a(istate) *= weight
|
||
|
vx_rho_b(istate) *= weight
|
||
|
vc_rho_b(istate) *= weight
|
||
|
do m= 1,3
|
||
|
contrib_grad_ca(m,istate) = weight * (2.d0 * vc_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_b(m,istate))
|
||
|
contrib_grad_xa(m,istate) = weight * (2.d0 * vx_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_b(m,istate))
|
||
|
contrib_grad_cb(m,istate) = weight * (2.d0 * vc_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_a(m,istate))
|
||
|
contrib_grad_xb(m,istate) = weight * (2.d0 * vx_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_a(m,istate))
|
||
|
enddo
|
||
|
do j = 1, ao_num
|
||
|
aos_vc_alpha_pbe_w(j,i,istate) = vc_rho_a(istate) * aos_in_r_array(j,i)
|
||
|
aos_vc_beta_pbe_w (j,i,istate) = vc_rho_b(istate) * aos_in_r_array(j,i)
|
||
|
aos_vx_alpha_pbe_w(j,i,istate) = vx_rho_a(istate) * aos_in_r_array(j,i)
|
||
|
aos_vx_beta_pbe_w (j,i,istate) = vx_rho_b(istate) * aos_in_r_array(j,i)
|
||
|
enddo
|
||
|
do j = 1, ao_num
|
||
|
do m = 1,3
|
||
|
aos_dvc_alpha_pbe_w(j,i,istate) += contrib_grad_ca(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||
|
aos_dvc_beta_pbe_w (j,i,istate) += contrib_grad_cb(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||
|
aos_dvx_alpha_pbe_w(j,i,istate) += contrib_grad_xa(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||
|
aos_dvx_beta_pbe_w (j,i,istate) += contrib_grad_xb(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
|
||
|
BEGIN_PROVIDER [double precision, pot_scal_x_alpha_ao_pbe, (ao_num,ao_num,N_states)]
|
||
|
&BEGIN_PROVIDER [double precision, pot_scal_c_alpha_ao_pbe, (ao_num,ao_num,N_states)]
|
||
|
&BEGIN_PROVIDER [double precision, pot_scal_x_beta_ao_pbe, (ao_num,ao_num,N_states)]
|
||
|
&BEGIN_PROVIDER [double precision, pot_scal_c_beta_ao_pbe, (ao_num,ao_num,N_states)]
|
||
|
implicit none
|
||
|
integer :: istate
|
||
|
BEGIN_DOC
|
||
|
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential
|
||
|
END_DOC
|
||
|
pot_scal_c_alpha_ao_pbe = 0.d0
|
||
|
pot_scal_x_alpha_ao_pbe = 0.d0
|
||
|
pot_scal_c_beta_ao_pbe = 0.d0
|
||
|
pot_scal_x_beta_ao_pbe = 0.d0
|
||
|
double precision :: wall_1,wall_2
|
||
|
call wall_time(wall_1)
|
||
|
do istate = 1, N_states
|
||
|
! correlation alpha
|
||
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||
|
aos_vc_alpha_pbe_w(1,1,istate),size(aos_vc_alpha_pbe_w,1), &
|
||
|
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
|
||
|
pot_scal_c_alpha_ao_pbe(1,1,istate),size(pot_scal_c_alpha_ao_pbe,1))
|
||
|
! correlation beta
|
||
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||
|
aos_vc_beta_pbe_w(1,1,istate),size(aos_vc_beta_pbe_w,1), &
|
||
|
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
|
||
|
pot_scal_c_beta_ao_pbe(1,1,istate),size(pot_scal_c_beta_ao_pbe,1))
|
||
|
! exchange alpha
|
||
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||
|
aos_vx_alpha_pbe_w(1,1,istate),size(aos_vx_alpha_pbe_w,1), &
|
||
|
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
|
||
|
pot_scal_x_alpha_ao_pbe(1,1,istate),size(pot_scal_x_alpha_ao_pbe,1))
|
||
|
! exchange beta
|
||
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||
|
aos_vx_beta_pbe_w(1,1,istate),size(aos_vx_beta_pbe_w,1), &
|
||
|
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
|
||
|
pot_scal_x_beta_ao_pbe(1,1,istate), size(pot_scal_x_beta_ao_pbe,1))
|
||
|
|
||
|
enddo
|
||
|
call wall_time(wall_2)
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
|
||
|
BEGIN_PROVIDER [double precision, pot_grad_x_alpha_ao_pbe,(ao_num,ao_num,N_states)]
|
||
|
&BEGIN_PROVIDER [double precision, pot_grad_x_beta_ao_pbe,(ao_num,ao_num,N_states)]
|
||
|
&BEGIN_PROVIDER [double precision, pot_grad_c_alpha_ao_pbe,(ao_num,ao_num,N_states)]
|
||
|
&BEGIN_PROVIDER [double precision, pot_grad_c_beta_ao_pbe,(ao_num,ao_num,N_states)]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the gradienst of the density and orbitals
|
||
|
END_DOC
|
||
|
integer :: istate
|
||
|
double precision :: wall_1,wall_2
|
||
|
call wall_time(wall_1)
|
||
|
pot_grad_c_alpha_ao_pbe = 0.d0
|
||
|
pot_grad_x_alpha_ao_pbe = 0.d0
|
||
|
pot_grad_c_beta_ao_pbe = 0.d0
|
||
|
pot_grad_x_beta_ao_pbe = 0.d0
|
||
|
do istate = 1, N_states
|
||
|
! correlation alpha
|
||
|
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||
|
aos_dvc_alpha_pbe_w(1,1,istate),size(aos_dvc_alpha_pbe_w,1), &
|
||
|
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
|
||
|
pot_grad_c_alpha_ao_pbe(1,1,istate),size(pot_grad_c_alpha_ao_pbe,1))
|
||
|
! correlation beta
|
||
|
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||
|
aos_dvc_beta_pbe_w(1,1,istate),size(aos_dvc_beta_pbe_w,1), &
|
||
|
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
|
||
|
pot_grad_c_beta_ao_pbe(1,1,istate),size(pot_grad_c_beta_ao_pbe,1))
|
||
|
! exchange alpha
|
||
|
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||
|
aos_dvx_alpha_pbe_w(1,1,istate),size(aos_dvx_alpha_pbe_w,1), &
|
||
|
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
|
||
|
pot_grad_x_alpha_ao_pbe(1,1,istate),size(pot_grad_x_alpha_ao_pbe,1))
|
||
|
! exchange beta
|
||
|
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||
|
aos_dvx_beta_pbe_w(1,1,istate),size(aos_dvx_beta_pbe_w,1), &
|
||
|
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
|
||
|
pot_grad_x_beta_ao_pbe(1,1,istate),size(pot_grad_x_beta_ao_pbe,1))
|
||
|
enddo
|
||
|
|
||
|
call wall_time(wall_2)
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
|
||
|
BEGIN_PROVIDER[double precision, aos_vxc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||
|
&BEGIN_PROVIDER[double precision, aos_vxc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||
|
&BEGIN_PROVIDER[double precision, aos_dvxc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||
|
&BEGIN_PROVIDER[double precision, aos_dvxc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! aos_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
|
||
|
END_DOC
|
||
|
integer :: istate,i,j,m
|
||
|
double precision :: r(3)
|
||
|
double precision :: mu,weight
|
||
|
double precision, allocatable :: ex(:), ec(:)
|
||
|
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
|
||
|
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
|
||
|
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
|
||
|
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
|
||
|
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
|
||
|
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
|
||
|
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
|
||
|
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
|
||
|
allocate(contrib_grad_xa(3,N_states),contrib_grad_xb(3,N_states),contrib_grad_ca(3,N_states),contrib_grad_cb(3,N_states))
|
||
|
|
||
|
aos_dvxc_alpha_pbe_w = 0.d0
|
||
|
aos_dvxc_beta_pbe_w = 0.d0
|
||
|
|
||
|
do istate = 1, N_states
|
||
|
do i = 1, n_points_final_grid
|
||
|
r(1) = final_grid_points(1,i)
|
||
|
r(2) = final_grid_points(2,i)
|
||
|
r(3) = final_grid_points(3,i)
|
||
|
weight = final_weight_at_r_vector(i)
|
||
|
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||
|
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||
|
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
||
|
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
||
|
grad_rho_a_2 = 0.d0
|
||
|
grad_rho_b_2 = 0.d0
|
||
|
grad_rho_a_b = 0.d0
|
||
|
do m = 1, 3
|
||
|
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
|
||
|
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
|
||
|
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
|
||
|
enddo
|
||
|
|
||
|
! inputs
|
||
|
call GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||
|
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
||
|
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
||
|
vx_rho_a(istate) *= weight
|
||
|
vc_rho_a(istate) *= weight
|
||
|
vx_rho_b(istate) *= weight
|
||
|
vc_rho_b(istate) *= weight
|
||
|
do m= 1,3
|
||
|
contrib_grad_ca(m,istate) = weight * (2.d0 * vc_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_b(m,istate))
|
||
|
contrib_grad_xa(m,istate) = weight * (2.d0 * vx_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_b(m,istate))
|
||
|
contrib_grad_cb(m,istate) = weight * (2.d0 * vc_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_a(m,istate))
|
||
|
contrib_grad_xb(m,istate) = weight * (2.d0 * vx_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_a(m,istate))
|
||
|
enddo
|
||
|
do j = 1, ao_num
|
||
|
aos_vxc_alpha_pbe_w(j,i,istate) = ( vc_rho_a(istate) + vx_rho_a(istate) ) * aos_in_r_array(j,i)
|
||
|
aos_vxc_beta_pbe_w (j,i,istate) = ( vc_rho_b(istate) + vx_rho_b(istate) ) * aos_in_r_array(j,i)
|
||
|
enddo
|
||
|
do j = 1, ao_num
|
||
|
do m = 1,3
|
||
|
aos_dvxc_alpha_pbe_w(j,i,istate) += ( contrib_grad_ca(m,istate) + contrib_grad_xa(m,istate) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||
|
aos_dvxc_beta_pbe_w (j,i,istate) += ( contrib_grad_cb(m,istate) + contrib_grad_xb(m,istate) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
|
||
|
BEGIN_PROVIDER [double precision, pot_scal_xc_alpha_ao_pbe, (ao_num,ao_num,N_states)]
|
||
|
&BEGIN_PROVIDER [double precision, pot_scal_xc_beta_ao_pbe, (ao_num,ao_num,N_states)]
|
||
|
implicit none
|
||
|
integer :: istate
|
||
|
BEGIN_DOC
|
||
|
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential
|
||
|
END_DOC
|
||
|
pot_scal_xc_alpha_ao_pbe = 0.d0
|
||
|
pot_scal_xc_beta_ao_pbe = 0.d0
|
||
|
double precision :: wall_1,wall_2
|
||
|
call wall_time(wall_1)
|
||
|
do istate = 1, N_states
|
||
|
! exchange - correlation alpha
|
||
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||
|
aos_vxc_alpha_pbe_w(1,1,istate),size(aos_vxc_alpha_pbe_w,1), &
|
||
|
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
|
||
|
pot_scal_xc_alpha_ao_pbe(1,1,istate),size(pot_scal_xc_alpha_ao_pbe,1))
|
||
|
! exchange - correlation beta
|
||
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||
|
aos_vxc_beta_pbe_w(1,1,istate),size(aos_vxc_beta_pbe_w,1), &
|
||
|
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
|
||
|
pot_scal_xc_beta_ao_pbe(1,1,istate),size(pot_scal_xc_beta_ao_pbe,1))
|
||
|
enddo
|
||
|
call wall_time(wall_2)
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
|
||
|
BEGIN_PROVIDER [double precision, pot_grad_xc_alpha_ao_pbe,(ao_num,ao_num,N_states)]
|
||
|
&BEGIN_PROVIDER [double precision, pot_grad_xc_beta_ao_pbe,(ao_num,ao_num,N_states)]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the gradienst of the density and orbitals
|
||
|
END_DOC
|
||
|
integer :: istate
|
||
|
double precision :: wall_1,wall_2
|
||
|
call wall_time(wall_1)
|
||
|
pot_grad_xc_alpha_ao_pbe = 0.d0
|
||
|
pot_grad_xc_beta_ao_pbe = 0.d0
|
||
|
do istate = 1, N_states
|
||
|
! correlation alpha
|
||
|
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||
|
aos_dvxc_alpha_pbe_w(1,1,istate),size(aos_dvxc_alpha_pbe_w,1), &
|
||
|
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
|
||
|
pot_grad_xc_alpha_ao_pbe(1,1,istate),size(pot_grad_xc_alpha_ao_pbe,1))
|
||
|
! correlation beta
|
||
|
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||
|
aos_dvxc_beta_pbe_w(1,1,istate),size(aos_dvxc_beta_pbe_w,1), &
|
||
|
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
|
||
|
pot_grad_xc_beta_ao_pbe(1,1,istate),size(pot_grad_xc_beta_ao_pbe,1))
|
||
|
enddo
|
||
|
|
||
|
call wall_time(wall_2)
|
||
|
|
||
|
END_PROVIDER
|