10
1
mirror of https://github.com/pfloos/quack synced 2025-04-17 22:10:39 +02:00
QuAcK/src/GW/SRG_qsGW.f90
2024-09-01 13:50:29 +02:00

408 lines
12 KiB
Fortran

! ---
subroutine SRG_qsGW(dotest, maxSCF, thresh, max_diis, doACFDT, exchange_kernel, doXBS, &
BSE, BSE2, TDA_W, TDA, dBSE, dTDA, singlet, triplet, eta, nNuc, &
ZNuc, rNuc, ENuc, nBas, nOrb, nC, nO, nV, nR, nS, ERHF, S, &
X, T, V, Hc, ERI_AO, ERI_MO, dipole_int_AO, dipole_int_MO, PHF, cHF, eHF)
! Perform a quasiparticle self-consistent GW calculation
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: dotest
integer,intent(in) :: maxSCF
integer,intent(in) :: max_diis
double precision,intent(in) :: thresh
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: doXBS
logical,intent(in) :: BSE
logical,intent(in) :: BSE2
logical,intent(in) :: TDA_W
logical,intent(in) :: TDA
logical,intent(in) :: dBSE
logical,intent(in) :: dTDA
logical,intent(in) :: singlet
logical,intent(in) :: triplet
double precision,intent(in) :: eta
integer,intent(in) :: nNuc
double precision,intent(in) :: ZNuc(nNuc)
double precision,intent(in) :: rNuc(nNuc,ncart)
double precision,intent(in) :: ENuc
integer,intent(in) :: nBas, nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: ERHF
double precision,intent(in) :: eHF(nOrb)
double precision,intent(in) :: cHF(nBas,nOrb)
double precision,intent(in) :: PHF(nBas,nBas)
double precision,intent(in) :: S(nBas,nBas)
double precision,intent(in) :: T(nBas,nBas)
double precision,intent(in) :: V(nBas,nBas)
double precision,intent(in) :: Hc(nBas,nBas)
double precision,intent(in) :: X(nBas,nOrb)
double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas)
double precision,intent(inout):: ERI_MO(nOrb,nOrb,nOrb,nOrb)
double precision,intent(in) :: dipole_int_AO(nBas,nBas,ncart)
double precision,intent(inout):: dipole_int_MO(nOrb,nOrb,ncart)
! Local variables
integer :: nSCF
integer :: nBas_Sq
integer :: ispin
integer :: ixyz
integer :: n_diis
double precision :: ET
double precision :: EV
double precision :: EJ
double precision :: Ex
double precision :: EqsGW
double precision :: EcRPA
double precision :: EcBSE(nspin)
double precision :: EcGM
double precision :: Conv
double precision :: rcond
double precision :: tao,tao1,tao2,tsrg,tsrg1,tsrg2,tlr,tlr1,tlr2,t1,t2,tt,tmo1,tmo2,tmo,tex,tex1,tex2
double precision,external :: trace_matrix
double precision :: dipole(ncart)
logical :: dRPA = .true.
logical :: print_W = .true.
double precision,allocatable :: error_diis(:,:)
double precision,allocatable :: F_diis(:,:)
double precision,allocatable :: Aph(:,:)
double precision,allocatable :: Bph(:,:)
double precision,allocatable :: Om(:)
double precision,allocatable :: XpY(:,:)
double precision,allocatable :: XmY(:,:)
double precision,allocatable :: rho(:,:,:)
double precision,allocatable :: c(:,:)
double precision,allocatable :: cp(:,:)
double precision,allocatable :: eGW(:)
double precision,allocatable :: eOld(:)
double precision,allocatable :: P(:,:)
double precision,allocatable :: F(:,:)
double precision,allocatable :: Fp(:,:)
double precision,allocatable :: J(:,:)
double precision,allocatable :: K(:,:)
double precision,allocatable :: SigC(:,:)
double precision,allocatable :: SigCp(:,:)
double precision,allocatable :: Z(:)
double precision,allocatable :: error(:,:)
double precision,parameter :: flow = 500d0
! Hello world
write(*,*)
write(*,*)'***********************************'
write(*,*)'* Restricted SRG-qsGW Calculation *'
write(*,*)'***********************************'
write(*,*)
! Warning
write(*,*) '!! ERIs in MO basis will be overwritten in qsGW !!'
write(*,*)
! Stuff
nBas_Sq = nBas*nBas
! TDA for W
if(TDA_W) then
write(*,*) 'Tamm-Dancoff approximation for dynamic screening!'
write(*,*)
end if
! TDA
if(TDA) then
write(*,*) 'Tamm-Dancoff approximation activated!'
write(*,*)
end if
! Memory allocation
allocate(eGW(nOrb))
allocate(eOld(nOrb))
allocate(Z(nOrb))
allocate(c(nBas,nOrb))
allocate(cp(nOrb,nOrb))
allocate(Fp(nOrb,nOrb))
allocate(SigC(nOrb,nOrb))
allocate(P(nBas,nBas))
allocate(F(nBas,nBas))
allocate(J(nBas,nBas))
allocate(K(nBas,nBas))
allocate(error(nBas,nBas))
allocate(SigCp(nBas,nBas))
allocate(Aph(nS,nS))
allocate(Bph(nS,nS))
allocate(Om(nS))
allocate(XpY(nS,nS))
allocate(XmY(nS,nS))
allocate(rho(nOrb,nOrb,nS))
allocate(error_diis(nBas_Sq,max_diis))
allocate(F_diis(nBas_Sq,max_diis))
! Initialization
nSCF = -1
n_diis = 0
ispin = 1
Conv = 1d0
P(:,:) = PHF(:,:)
eGW(:) = eHF(:)
eOld(:) = eHF(:)
c(:,:) = cHF(:,:)
F_diis(:,:) = 0d0
error_diis(:,:) = 0d0
rcond = 0d0
!------------------------------------------------------------------------
! Main loop
!------------------------------------------------------------------------
do while(Conv > thresh .and. nSCF <= maxSCF)
! Increment
nSCF = nSCF + 1
! Buid Hartree matrix
call wall_time(t1)
call Hartree_matrix_AO_basis(nBas,P,ERI_AO,J)
! Compute exchange part of the self-energy
call exchange_matrix_AO_basis(nBas,P,ERI_AO,K)
call wall_time(t2)
tt=tt+t2-t1
! AO to MO transformation of two-electron integrals
call wall_time(tao1)
do ixyz = 1, ncart
call AOtoMO(nBas, nOrb, cHF, dipole_int_AO(1,1,ixyz), dipole_int_MO(1,1,ixyz))
end do
call AOtoMO_ERI_RHF(nBas, nOrb, c, ERI_AO, ERI_MO)
call wall_time(tao2)
tao = tao + tao2 - tao1
! Compute linear response
call wall_time(tlr1)
call phLR_A(ispin,dRPA,nOrb,nC,nO,nV,nR,nS,1d0,eGW,ERI_MO,Aph)
if(.not.TDA_W) call phLR_B(ispin,dRPA,nOrb,nC,nO,nV,nR,nS,1d0,ERI_MO,Bph)
call phLR(TDA_W,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
call wall_time(tlr2)
tlr = tlr + tlr2 -tlr1
if(print_W) call print_excitation_energies('phRPA@RGW','singlet',nS,Om)
! Compute correlation part of the self-energy
call wall_time(tex1)
call GW_excitation_density(nOrb,nC,nO,nR,nS,ERI_MO,XpY,rho)
call wall_time(tex2)
tex=tex+tex2-tex1
call wall_time(tsrg1)
call SRG_self_energy(flow,nOrb,nC,nO,nV,nR,nS,eGW,Om,rho,EcGM,SigC,Z)
call wall_time(tsrg2)
tsrg = tsrg + tsrg2 -tsrg1
! Make correlation self-energy Hermitian and transform it back to AO basis
call wall_time(tmo1)
call MOtoAO(nBas, nOrb, S, c, SigC, SigCp)
call wall_time(tmo2)
tmo = tmo + tmo2 - tmo1
! Solve the quasi-particle equation
F(:,:) = Hc(:,:) + J(:,:) + 0.5d0*K(:,:) + SigCp(:,:)
! Compute commutator and convergence criteria
error = matmul(F,matmul(P,S)) - matmul(matmul(S,P),F)
! DIIS extrapolation
if(max_diis > 1) then
n_diis = min(n_diis+1,max_diis)
call DIIS_extrapolation(rcond,nBas_Sq,nBas_Sq,n_diis,error_diis,F_diis,error,F)
end if
! Diagonalize Hamiltonian in AO basis
Fp = matmul(transpose(X), matmul(F, X))
cp(:,:) = Fp(:,:)
call diagonalize_matrix(nOrb, cp, eGW)
c = matmul(X, cp)
call AOtoMO(nBas, nOrb, c, SigCp, SigC)
! Compute new density matrix in the AO basis
P(:,:) = 2d0*matmul(c(:,1:nO),transpose(c(:,1:nO)))
! Save quasiparticles energy for next cycle
Conv = maxval(abs(error))
eOld(:) = eGW(:)
!------------------------------------------------------------------------
! Compute total energy
!------------------------------------------------------------------------
! Kinetic energy
ET = trace_matrix(nBas,matmul(P,T))
! Potential energy
EV = trace_matrix(nBas,matmul(P,V))
! Hartree energy
EJ = 0.5d0*trace_matrix(nBas,matmul(P,J))
! Exchange energy
Ex = 0.25d0*trace_matrix(nBas,matmul(P,K))
! Total energy
EqsGW = ET + EV + EJ + Ex
! Print results
call dipole_moment(nBas,P,nNuc,ZNuc,rNuc,dipole_int_AO,dipole)
call print_qsRGW(nBas, nOrb, nO, nSCF, Conv, thresh, eHF, eGW, c, &
SigC, Z, ENuc, ET, EV, EJ, Ex, EcGM, EcRPA, EqsGW, dipole)
end do
!------------------------------------------------------------------------
! End main loop
!------------------------------------------------------------------------
! Did it actually converge?
if(nSCF == maxSCF+1) then
write(*,*)
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)' Convergence failed '
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)
deallocate(c, cp, P, F, Fp, J, K, SigC, Z, Om, XpY, XmY, rho, error, error_diis, F_diis)
stop
end if
print *, "Wall time for Fock and exchange build", tt
print *, "Wall Time for AO to MO", tao
print *, "Wall Time for LR", tlr
print *, "Wall Time for excitation density", tex
print *, "Wall Time for SRG", tsrg
print *, "Wall time MO to AO Sigma", tmo
! Cumulant expansion
call RGWC(dotest,eta,nOrb,nC,nO,nV,nR,nS,Om,rho,eHF,eGW,eGW,Z)
! Deallocate memory
deallocate(c, cp, P, F, Fp, J, K, SigC, Z, Om, XpY, XmY, rho, error, error_diis, F_diis)
! Perform BSE calculation
if(BSE) then
call GW_phBSE(BSE2, TDA_W, TDA, dBSE, dTDA, singlet, triplet, eta, nOrb, &
nC, nO, nV, nR, nS, ERI_MO, dipole_int_MO, eGW, eGW, EcBSE)
if(exchange_kernel) then
EcBSE(1) = 0.5d0*EcBSE(1)
EcBSE(2) = 1.5d0*EcBSE(2)
end if
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsGW correlation energy (singlet) =',EcBSE(1)
write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsGW correlation energy (triplet) =',EcBSE(2)
write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsGW correlation energy =',EcBSE(1) + EcBSE(2)
write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsGW total energy =',ENuc + EqsGW + EcBSE(1) + EcBSE(2)
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
! Compute the BSE correlation energy via the adiabatic connection
if(doACFDT) then
write(*,*) '------------------------------------------------------'
write(*,*) 'Adiabatic connection version of BSE correlation energy'
write(*,*) '------------------------------------------------------'
write(*,*)
if(doXBS) then
write(*,*) '*** scaled screening version (XBS) ***'
write(*,*)
end if
call GW_phACFDT(exchange_kernel, doXBS, .true., TDA_W, TDA, BSE, singlet, triplet, &
eta, nOrb, nC, nO, nV, nR, nS, ERI_MO, eGW, eGW, EcBSE)
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW correlation energy (singlet) =',EcBSE(1)
write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW correlation energy (triplet) =',EcBSE(2)
write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW correlation energy =',EcBSE(1) + EcBSE(2)
write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW total energy =',ENuc + EqsGW + EcBSE(1) + EcBSE(2)
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
end if
end if
end subroutine