mirror of
https://github.com/pfloos/quack
synced 2025-01-05 10:59:38 +01:00
414 lines
13 KiB
Fortran
414 lines
13 KiB
Fortran
subroutine qsGGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA,dBSE,dTDA,doppBSE, &
|
|
eta,doSRG,nNuc,ZNuc,rNuc,ENuc,nBas,nBas2,nC,nO,nV,nR,nS,EGHF,Ov,Or,T,V,Hc,ERI_AO, &
|
|
ERI_MO,dipole_int_AO,dipole_int_MO,PHF,cHF,eHF)
|
|
|
|
! Generalized version of quasiparticle self-consistent GW
|
|
|
|
implicit none
|
|
include 'parameters.h'
|
|
|
|
! Input variables
|
|
|
|
logical,intent(in) :: dotest
|
|
|
|
integer,intent(in) :: maxSCF
|
|
integer,intent(in) :: max_diis
|
|
double precision,intent(in) :: thresh
|
|
logical,intent(in) :: doACFDT
|
|
logical,intent(in) :: exchange_kernel
|
|
logical,intent(in) :: doXBS
|
|
logical,intent(in) :: dophBSE
|
|
logical,intent(in) :: dophBSE2
|
|
logical,intent(in) :: TDA_W
|
|
logical,intent(in) :: TDA
|
|
logical,intent(in) :: dBSE
|
|
logical,intent(in) :: dTDA
|
|
logical,intent(in) :: doppBSE
|
|
double precision,intent(in) :: eta
|
|
logical,intent(in) :: doSRG
|
|
|
|
integer,intent(in) :: nNuc
|
|
double precision,intent(in) :: ZNuc(nNuc)
|
|
double precision,intent(in) :: rNuc(nNuc,ncart)
|
|
double precision,intent(in) :: ENuc
|
|
|
|
integer,intent(in) :: nBas
|
|
integer,intent(in) :: nBas2
|
|
integer,intent(in) :: nC
|
|
integer,intent(in) :: nO
|
|
integer,intent(in) :: nV
|
|
integer,intent(in) :: nR
|
|
integer,intent(in) :: nS
|
|
double precision,intent(in) :: EGHF
|
|
double precision,intent(in) :: eHF(nBas2)
|
|
double precision,intent(in) :: cHF(nBas2,nBas2)
|
|
double precision,intent(in) :: PHF(nBas2,nBas2)
|
|
double precision,intent(in) :: Ov(nBas,nBas)
|
|
double precision,intent(in) :: T(nBas,nBas)
|
|
double precision,intent(in) :: V(nBas,nBas)
|
|
double precision,intent(in) :: Hc(nBas,nBas)
|
|
double precision,intent(in) :: Or(nBas,nBas)
|
|
double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas)
|
|
double precision,intent(inout):: ERI_MO(nBas2,nBas2,nBas2,nBas2)
|
|
double precision,intent(in) :: dipole_int_AO(nBas,nBas,ncart)
|
|
double precision,intent(inout):: dipole_int_MO(nBas2,nBas2,ncart)
|
|
|
|
! Local variables
|
|
|
|
integer :: nSCF
|
|
integer :: nBasSq
|
|
integer :: nBas2Sq
|
|
integer :: ixyz
|
|
integer :: n_diis
|
|
double precision :: flow
|
|
double precision :: ET,ETaa,ETbb
|
|
double precision :: EV,EVaa,EVbb
|
|
double precision :: EJ,EJaaaa,EJaabb,EJbbaa,EJbbbb
|
|
double precision :: EK,EKaaaa,EKabba,EKbaab,EKbbbb
|
|
double precision :: EqsGW
|
|
double precision :: EcRPA
|
|
double precision :: EcBSE
|
|
double precision :: EcGM
|
|
double precision :: Conv
|
|
double precision :: rcond
|
|
double precision,external :: trace_matrix
|
|
double precision :: dipole(ncart)
|
|
|
|
logical :: dRPA = .true.
|
|
logical :: print_W = .true.
|
|
double precision,allocatable :: err_diis(:,:)
|
|
double precision,allocatable :: F_diis(:,:)
|
|
double precision,allocatable :: Aph(:,:)
|
|
double precision,allocatable :: Bph(:,:)
|
|
double precision,allocatable :: Om(:)
|
|
double precision,allocatable :: XpY(:,:)
|
|
double precision,allocatable :: XmY(:,:)
|
|
double precision,allocatable :: rho(:,:,:)
|
|
|
|
double precision,allocatable :: Ca(:,:),Cb(:,:)
|
|
double precision,allocatable :: ERI_tmp(:,:,:,:)
|
|
double precision,allocatable :: Jaa(:,:),Jbb(:,:)
|
|
double precision,allocatable :: Kaa(:,:),Kab(:,:),Kba(:,:),Kbb(:,:)
|
|
double precision,allocatable :: Faa(:,:),Fab(:,:),Fba(:,:),Fbb(:,:)
|
|
double precision,allocatable :: Paa(:,:),Pab(:,:),Pba(:,:),Pbb(:,:)
|
|
|
|
double precision,allocatable :: C(:,:)
|
|
double precision,allocatable :: Cp(:,:)
|
|
double precision,allocatable :: eGW(:)
|
|
double precision,allocatable :: P(:,:)
|
|
double precision,allocatable :: F(:,:)
|
|
double precision,allocatable :: H(:,:)
|
|
double precision,allocatable :: S(:,:)
|
|
double precision,allocatable :: X(:,:)
|
|
double precision,allocatable :: Fp(:,:)
|
|
double precision,allocatable :: SigC(:,:)
|
|
double precision,allocatable :: SigCp(:,:)
|
|
double precision,allocatable :: Z(:)
|
|
double precision,allocatable :: err(:,:)
|
|
|
|
! Hello world
|
|
|
|
write(*,*)
|
|
write(*,*)'********************************'
|
|
write(*,*)'* Generalized qsGW Calculation *'
|
|
write(*,*)'********************************'
|
|
write(*,*)
|
|
|
|
! Warning
|
|
|
|
write(*,*) '!! ERIs in MO basis will be overwritten in qsGW !!'
|
|
write(*,*)
|
|
|
|
! Stuff
|
|
|
|
nBasSq = nBas*nBas
|
|
nBas2Sq = nBas2*nBas2
|
|
|
|
! TDA for W
|
|
|
|
if(TDA_W) then
|
|
write(*,*) 'Tamm-Dancoff approximation for dynamic screening!'
|
|
write(*,*)
|
|
end if
|
|
|
|
! SRG regularization
|
|
|
|
flow = 500d0
|
|
|
|
if(doSRG) then
|
|
|
|
write(*,*) '*** SRG regularized qsGW scheme ***'
|
|
write(*,*)
|
|
|
|
end if
|
|
|
|
! Memory allocation
|
|
|
|
allocate(Ca(nBas,nBas2),Cb(nBas,nBas2),P(nBas2,nBas2),Jaa(nBas,nBas),Jbb(nBas,nBas), &
|
|
Kaa(nBas,nBas),Kab(nBas,nBas),Kba(nBas,nBas),Kbb(nBas,nBas), &
|
|
Faa(nBas,nBas),Fab(nBas,nBas),Fba(nBas,nBas),Fbb(nBas,nBas), &
|
|
Paa(nBas,nBas),Pab(nBas,nBas),Pba(nBas,nBas),Pbb(nBas,nBas), &
|
|
F(nBas2,nBas2),Fp(nBas2,nBas2),C(nBas2,nBas2),Cp(nBas2,nBas2), &
|
|
H(nBas2,nBas2),S(nBas2,nBas2),X(nBas2,nBas2),err(nBas2,nBas2), &
|
|
err_diis(nBas2Sq,max_diis),F_diis(nBas2Sq,max_diis), &
|
|
eGW(nBas2),SigC(nBas2,nBas2),SigCp(nBas,nBas),Z(nBas2),Aph(nS,nS),Bph(nS,nS), &
|
|
Om(nS),XpY(nS,nS),XmY(nS,nS),rho(nBas2,nBas2,nS))
|
|
|
|
! Initialization
|
|
|
|
nSCF = -1
|
|
n_diis = 0
|
|
Conv = 1d0
|
|
P(:,:) = PHF(:,:)
|
|
eGW(:) = eHF(:)
|
|
c(:,:) = cHF(:,:)
|
|
F_diis(:,:) = 0d0
|
|
err_diis(:,:) = 0d0
|
|
rcond = 0d0
|
|
|
|
! Construct super overlap matrix
|
|
|
|
S( : , : ) = 0d0
|
|
S( 1:nBas , 1:nBas ) = Ov(1:nBas,1:nBas)
|
|
S(nBas+1:nBas2,nBas+1:nBas2) = Ov(1:nBas,1:nBas)
|
|
|
|
! Construct super orthogonalization matrix
|
|
|
|
X( : , : ) = 0d0
|
|
X( 1:nBas , 1:nBas ) = Or(1:nBas,1:nBas)
|
|
X(nBas+1:nBas2,nBas+1:nBas2) = Or(1:nBas,1:nBas)
|
|
|
|
! Construct super orthogonalization matrix
|
|
|
|
H( : , : ) = 0d0
|
|
H( 1:nBas , 1:nBas ) = Hc(1:nBas,1:nBas)
|
|
H(nBas+1:nBas2,nBas+1:nBas2) = Hc(1:nBas,1:nBas)
|
|
|
|
! Construct super density matrix
|
|
|
|
P(:,:) = matmul(C(:,1:nO),transpose(C(:,1:nO)))
|
|
|
|
Paa(:,:) = P( 1:nBas , 1:nBas )
|
|
Pab(:,:) = P( 1:nBas ,nBas+1:nBas2)
|
|
Pba(:,:) = P(nBas+1:nBas2, 1:nBas )
|
|
Pbb(:,:) = P(nBas+1:nBas2,nBas+1:nBas2)
|
|
|
|
!------------------------------------------------------------------------
|
|
! Main loop
|
|
!------------------------------------------------------------------------
|
|
|
|
do while(Conv > thresh .and. nSCF <= maxSCF)
|
|
|
|
! Increment
|
|
|
|
nSCF = nSCF + 1
|
|
|
|
! Buid Hartree matrix
|
|
|
|
call Hartree_matrix_AO_basis(nBas,Paa,ERI_AO,Jaa)
|
|
call Hartree_matrix_AO_basis(nBas,Pbb,ERI_AO,Jbb)
|
|
|
|
! Compute exchange part of the self-energy
|
|
|
|
call exchange_matrix_AO_basis(nBas,Paa,ERI_AO,Kaa)
|
|
call exchange_matrix_AO_basis(nBas,Pba,ERI_AO,Kab)
|
|
call exchange_matrix_AO_basis(nBas,Pab,ERI_AO,Kba)
|
|
call exchange_matrix_AO_basis(nBas,Pbb,ERI_AO,Kbb)
|
|
|
|
! Build individual Fock matrices
|
|
|
|
Faa(:,:) = Hc(:,:) + Jaa(:,:) + Jbb(:,:) + Kaa(:,:)
|
|
Fab(:,:) = + Kab(:,:)
|
|
Fba(:,:) = + Kba(:,:)
|
|
Fbb(:,:) = Hc(:,:) + Jbb(:,:) + Jaa(:,:) + Kbb(:,:)
|
|
|
|
! Build super Fock matrix
|
|
|
|
F( 1:nBas , 1:nBas ) = Faa(1:nBas,1:nBas)
|
|
F( 1:nBas ,nBas+1:nBas2) = Fab(1:nBas,1:nBas)
|
|
F(nBas+1:nBas2, 1:nBas ) = Fba(1:nBas,1:nBas)
|
|
F(nBas+1:nBas2,nBas+1:nBas2) = Fbb(1:nBas,1:nBas)
|
|
|
|
! AO to MO transformation of two-electron integrals
|
|
|
|
allocate(ERI_tmp(nBas2,nBas2,nBas2,nBas2))
|
|
|
|
Ca(:,:) = C(1:nBas,1:nBas2)
|
|
Cb(:,:) = C(nBas+1:nBas2,1:nBas2)
|
|
|
|
do ixyz=1,ncart
|
|
call AOtoMO_GHF(nBas,nBas2,Ca,Cb,dipole_int_AO(:,:,ixyz),dipole_int_MO(:,:,ixyz))
|
|
end do
|
|
|
|
call AOtoMO_ERI_GHF(nBas,nBas2,Ca,Ca,ERI_AO,ERI_tmp)
|
|
ERI_MO(:,:,:,:) = ERI_tmp(:,:,:,:)
|
|
|
|
call AOtoMO_ERI_GHF(nBas,nBas2,Ca,Cb,ERI_AO,ERI_tmp)
|
|
ERI_MO(:,:,:,:) = ERI_MO(:,:,:,:) + ERI_tmp(:,:,:,:)
|
|
|
|
call AOtoMO_ERI_GHF(nBas,nBas2,Cb,Ca,ERI_AO,ERI_tmp)
|
|
ERI_MO(:,:,:,:) = ERI_MO(:,:,:,:) + ERI_tmp(:,:,:,:)
|
|
|
|
call AOtoMO_ERI_GHF(nBas,nBas2,Cb,Cb,ERI_AO,ERI_tmp)
|
|
ERI_MO(:,:,:,:) = ERI_MO(:,:,:,:) + ERI_tmp(:,:,:,:)
|
|
|
|
deallocate(ERI_tmp)
|
|
|
|
! Compute linear response
|
|
|
|
call phGLR_A(dRPA,nBas2,nC,nO,nV,nR,nS,1d0,eGW,ERI_MO,Aph)
|
|
if(.not.TDA_W) call phGLR_B(dRPA,nBas2,nC,nO,nV,nR,nS,1d0,ERI_MO,Bph)
|
|
|
|
call phGLR(TDA_W,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
|
|
if(print_W) call print_excitation_energies('phRPA@GW@GHF','generalized',nS,Om)
|
|
|
|
! Compute correlation part of the self-energy
|
|
|
|
call GGW_excitation_density(nBas2,nC,nO,nR,nS,ERI_MO,XpY,rho)
|
|
|
|
if(doSRG) then
|
|
call GGW_SRG_self_energy(flow,nBas2,nC,nO,nV,nR,nS,eGW,Om,rho,EcGM,SigC,Z)
|
|
else
|
|
call GGW_self_energy(eta,nBas2,nC,nO,nV,nR,nS,eGW,Om,rho,EcGM,SigC,Z)
|
|
end if
|
|
|
|
! Make correlation self-energy Hermitian and transform it back to AO basis
|
|
|
|
SigC = 0.5d0*(SigC + transpose(SigC))
|
|
|
|
call MOtoAO_GHF(nBas2,nBas,S,Ca,Cb,SigC,SigCp)
|
|
|
|
! ... and add self-energy
|
|
|
|
F(:,:) = F(:,:) + SigCp(:,:)
|
|
|
|
! Compute commutator and convergence criteria
|
|
|
|
err = matmul(F,matmul(P,S)) - matmul(matmul(S,P),F)
|
|
|
|
if(nSCF > 1) Conv = maxval(abs(err))
|
|
|
|
! DIIS extrapolation
|
|
|
|
if(max_diis > 1) then
|
|
n_diis = min(n_diis+1,max_diis)
|
|
call DIIS_extrapolation(rcond,nBas2Sq,nBas2Sq,n_diis,err_diis,F_diis,err,F)
|
|
end if
|
|
|
|
! Transform Fock matrix in orthogonal basis
|
|
|
|
Fp(:,:) = matmul(transpose(X),matmul(F,X))
|
|
|
|
! Diagonalize Fock matrix to get eigenvectors and eigenvalues
|
|
|
|
Cp(:,:) = Fp(:,:)
|
|
call diagonalize_matrix(nBas2,Cp,eGW)
|
|
|
|
! Back-transform eigenvectors in non-orthogonal basis
|
|
|
|
C(:,:) = matmul(X,Cp)
|
|
|
|
call AOtoMO_GHF(nBas,nBas2,Ca,Cb,SigCp,SigC)
|
|
|
|
! Form super density matrix
|
|
|
|
P(:,:) = matmul(C(:,1:nO),transpose(C(:,1:nO)))
|
|
|
|
! Compute individual density matrices
|
|
|
|
Paa(:,:) = P( 1:nBas , 1:nBas )
|
|
Pab(:,:) = P( 1:nBas ,nBas+1:nBas2)
|
|
Pba(:,:) = P(nBas+1:nBas2, 1:nBas )
|
|
Pbb(:,:) = P(nBas+1:nBas2,nBas+1:nBas2)
|
|
|
|
!------------------------------------------------------------------------
|
|
! Compute total energy
|
|
!------------------------------------------------------------------------
|
|
|
|
! Kinetic energy
|
|
|
|
ETaa = trace_matrix(nBas,matmul(Paa,T))
|
|
ETbb = trace_matrix(nBas,matmul(Pbb,T))
|
|
|
|
ET = ETaa + ETbb
|
|
|
|
! Potential energy
|
|
|
|
EVaa = trace_matrix(nBas,matmul(Paa,V))
|
|
EVbb = trace_matrix(nBas,matmul(Pbb,V))
|
|
|
|
EV = EVaa + EVbb
|
|
|
|
! Hartree energy
|
|
|
|
EJaaaa = 0.5d0*trace_matrix(nBas,matmul(Paa,Jaa))
|
|
EJaabb = 0.5d0*trace_matrix(nBas,matmul(Paa,Jbb))
|
|
EJbbaa = 0.5d0*trace_matrix(nBas,matmul(Pbb,Jaa))
|
|
EJbbbb = 0.5d0*trace_matrix(nBas,matmul(Pbb,Jbb))
|
|
|
|
EJ = EJaaaa + EJaabb + EJbbaa + EJbbbb
|
|
|
|
! Exchange energy
|
|
|
|
EKaaaa = 0.5d0*trace_matrix(nBas,matmul(Paa,Kaa))
|
|
EKabba = 0.5d0*trace_matrix(nBas,matmul(Pab,Kba))
|
|
EKbaab = 0.5d0*trace_matrix(nBas,matmul(Pba,Kab))
|
|
EKbbbb = 0.5d0*trace_matrix(nBas,matmul(Pbb,Kbb))
|
|
|
|
EK = EKaaaa + EKabba + EKbaab + EKbbbb
|
|
|
|
! Total energy
|
|
|
|
EqsGW = ET + EV + EJ + EK
|
|
|
|
! Print results
|
|
|
|
call dipole_moment(nBas2,P,nNuc,ZNuc,rNuc,dipole_int_AO,dipole)
|
|
call print_qsGGW(nBas,nBas2,nO,nSCF,Conv,thresh,eHF,eGW,c,Ov,SigC,Z,ENuc,ET,EV,EJ,EK,EcGM,EcRPA,EqsGW,dipole)
|
|
|
|
end do
|
|
!------------------------------------------------------------------------
|
|
! End main loop
|
|
!------------------------------------------------------------------------
|
|
|
|
! Did it actually converge?
|
|
|
|
if(nSCF == maxSCF+1) then
|
|
|
|
write(*,*)
|
|
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
|
|
write(*,*)' Convergence failed '
|
|
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
|
|
write(*,*)
|
|
|
|
stop
|
|
|
|
end if
|
|
|
|
! Perform BSE calculation
|
|
|
|
if(dophBSE) then
|
|
|
|
call GGW_phBSE(dophBSE2,TDA_W,TDA,dBSE,dTDA,eta,nBas2,nC,nO,nV,nR,nS,ERI_MO,dipole_int_MO,eGW,eGW,EcBSE)
|
|
|
|
write(*,*)
|
|
write(*,*)'-------------------------------------------------------------------------------'
|
|
write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@qsGW@GHF correlation energy = ',EcBSE,' au'
|
|
write(*,'(2X,A50,F20.10,A4)') 'Tr@BSE@qsGW@GHF total energy = ',ENuc + EqsGW + EcBSE,' au'
|
|
write(*,*)'-------------------------------------------------------------------------------'
|
|
write(*,*)
|
|
|
|
end if
|
|
|
|
! Testing zone
|
|
|
|
if(dotest) then
|
|
|
|
call dump_test_value('G','qsGW correlation energy',EcRPA)
|
|
call dump_test_value('G','qsGW HOMO energy',eGW(nO))
|
|
call dump_test_value('G','qsGW LUMO energy',eGW(nO+1))
|
|
|
|
end if
|
|
|
|
end subroutine
|