10
1
mirror of https://github.com/pfloos/quack synced 2025-04-29 19:54:51 +02:00
QuAcK/src/Parquet/G_irred_Parquet_self_energy.f90
2025-04-02 10:52:04 +02:00

328 lines
12 KiB
Fortran

subroutine G_Parquet_self_energy(eta,nOrb,nC,nO,nV,nR,nS,nOO,nVV,eQP,ERI,&
eh_rho,eh_Om,ee_rho,ee_Om,hh_rho,hh_Om,EcGM,SigC,Z)
! Compute correlation part of the self-energy coming from irreducible vertices contribution
implicit none
include 'parameters.h'
! Input variables
double precision,intent(in) :: eta
integer,intent(in) :: nOrb
integer,intent(in) :: nC, nO, nV, nR
integer,intent(in) :: nS, nOO, nVV
double precision,intent(in) :: eQP(nOrb)
double precision,intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
double precision,intent(in) :: eh_rho(nOrb,nOrb,nS)
double precision,intent(in) :: eh_Om(nS)
double precision,intent(in) :: ee_rho(nOrb,nOrb,nVV)
double precision,intent(in) :: ee_Om(nVV)
double precision,intent(in) :: hh_rho(nOrb,nOrb,nOO)
double precision,intent(in) :: hh_Om(nOO)
! Local variables
integer :: i,j,k,a,b,c
integer :: p,n
double precision :: eps,dem1,dem2,reg,reg1,reg2
double precision :: num
double precision :: start_t,end_t,t
! Output variables
double precision,intent(out) :: SigC(nOrb)
double precision,intent(out) :: Z(nOrb)
double precision,intent(out) :: EcGM
! Initialize
SigC(:) = 0d0
Z(:) = 0d0
EcGM = 0d0
!-----------------------------!
! GF2 part of the self-energy !
!-----------------------------!
call wall_time(start_t)
do p=nC+1,nOrb-nR
! 2h1p sum
do i=nC+1,nO
do j=nC+1,nO
do a=nO+1,nOrb-nR
eps = eQP(p) + eQP(a) - eQP(i) - eQP(j)
reg = (1d0 - exp(- 2d0 * eta * eps * eps))
num = 0.5d0*(ERI(p,a,j,i) - ERI(p,a,i,j))**2
SigC(p) = SigC(p) + num*reg/eps
Z(p) = Z(p) - num*reg/eps**2
end do
end do
end do
! 2p1h sum
do i=nC+1,nO
do a=nO+1,nOrb-nR
do b=nO+1,nOrb-nR
eps = eQP(p) + eQP(i) - eQP(a) - eQP(b)
reg = (1d0 - exp(- 2d0 * eta * eps * eps))
num = 0.5d0*(ERI(p,i,b,a) - ERI(p,i,a,b))**2
SigC(p) = SigC(p) + num*reg/eps
Z(p) = Z(p) - num*reg/eps**2
end do
end do
end do
end do
call wall_time(end_t)
t = end_t - start_t
write(*,'(1X,A50,1X,F9.3,A8)') 'Wall time for building GF(2) self-energy =',t,' seconds'
write(*,*)
!-----------------------------!
! eh part of the self-energy !
!-----------------------------!
call wall_time(start_t)
do p=nC+1,nOrb-nR
do i=nC+1,nO
do a=nO+1,nOrb-nR
do n=1,nS
!3h2p
do j=nC+1,nO
num = ERI(p,a,j,i) * &
(eh_rho(j,p,n) * eh_rho(i,a,n) - eh_rho(j,a,n) * eh_rho(i,p,n))
dem1 = eQP(a) - eQP(i) - eh_Om(n)
dem2 = eQP(p) - eQP(j) + eh_Om(n)
reg1 = (1d0 - exp(- 2d0 * eta * dem1 * dem1))
reg2 = (1d0 - exp(- 2d0 * eta * dem2 * dem2))
SigC(p) = SigC(p) - num * (reg1/dem1) * (reg2/dem2)
Z(p) = Z(p) + num * (reg1/dem1) * (reg2/dem2/dem2)
num = ERI(p,a,j,i) * &
(eh_rho(j,p,n) * eh_rho(i,a,n) - eh_rho(j,a,n) * eh_rho(i,p,n))
dem1 = eQP(a) - eQP(i) - eh_Om(n)
dem2 = eQP(p) + eQP(a) - eQP(i) - eQP(j)
reg1 = (1d0 - exp(- 2d0 * eta * dem1 * dem1))
reg2 = (1d0 - exp(- 2d0 * eta * dem2 * dem2))
SigC(p) = SigC(p) + num * (reg1/dem1) * (reg2/dem2)
Z(p) = Z(p) - num * (reg1/dem1) * (reg2/dem2/dem2)
num = ERI(p,i,j,a) * &
(eh_rho(j,p,n) * eh_rho(a,i,n) - eh_rho(j,i,n) * eh_rho(a,p,n))
dem1 = eQP(a) - eQP(i) + eh_Om(n)
dem2 = eQP(p) - eQP(j) + eh_Om(n)
reg1 = (1d0 - exp(- 2d0 * eta * dem1 * dem1))
reg2 = (1d0 - exp(- 2d0 * eta * dem2 * dem2))
SigC(p) = SigC(p) - num * (reg1/dem1) * (reg2/dem2)
Z(p) = Z(p) + num * (reg1/dem1) * (reg2/dem2/dem2)
num = ERI(p,a,j,i) * &
(eh_rho(j,p,n) * eh_rho(i,a,n) - eh_rho(j,a,n) * eh_rho(i,p,n))
dem1 = eQP(a) - eQP(i) + eh_Om(n)
dem2 = eQP(p) + eQP(a) - eQP(i) - eQP(j)
reg1 = (1d0 - exp(- 2d0 * eta * dem1 * dem1))
reg2 = (1d0 - exp(- 2d0 * eta * dem2 * dem2))
SigC(p) = SigC(p) - num * (reg1/dem1) * (reg2/dem2)
Z(p) = Z(p) + num * (reg1/dem1) * (reg2/dem2/dem2)
end do ! j
!3p2h
do b=nO+1,nOrb-nR
num = ERI(p,a,b,i) * &
(eh_rho(b,p,n) * eh_rho(i,a,n) - eh_rho(b,a,n) * eh_rho(i,p,n))
dem1 = eQP(a) - eQP(i) + eh_Om(n)
dem2 = eQP(p) - eQP(b) - eh_Om(n)
reg1 = (1d0 - exp(- 2d0 * eta * dem1 * dem1))
reg2 = (1d0 - exp(- 2d0 * eta * dem2 * dem2))
SigC(p) = SigC(p) - num * (reg1/dem1) * (reg2/dem2)
Z(p) = Z(p) + num * (reg1/dem1) * (reg2/dem2/dem2)
num = ERI(p,i,b,a) * &
(eh_rho(b,p,n) * eh_rho(a,i,n) - eh_rho(b,i,n) * eh_rho(a,p,n))
dem1 = eQP(a) - eQP(i) + eh_Om(n)
reg1 = (1d0 - exp(- 2d0 * eta * dem1 * dem1))
reg2 = (1d0 - exp(- 2d0 * eta * dem2 * dem2))
SigC(p) = SigC(p) - num * (reg1/dem1) * (reg2/dem2)
Z(p) = Z(p) + num * (reg1/dem1) * (reg2/dem2/dem2)
num = ERI(p,i,b,a) * &
(eh_rho(b,p,n) * eh_rho(a,i,n) - eh_rho(b,i,n) * eh_rho(a,p,n))
dem1 = eQP(a) - eQP(i) - eh_Om(n)
dem2 = eQP(p) - eQP(b) - eh_Om(n)
reg1 = (1d0 - exp(- 2d0 * eta * dem1 * dem1))
reg2 = (1d0 - exp(- 2d0 * eta * dem2 * dem2))
SigC(p) = SigC(p) - num * (reg1/dem1) * (reg2/dem2)
Z(p) = Z(p) + num * (reg1/dem1) * (reg2/dem2/dem2)
num = ERI(p,i,b,a) * &
(eh_rho(b,p,n) * eh_rho(a,i,n) - eh_rho(b,i,n) * eh_rho(a,p,n))
dem1 = eQP(a) - eQP(i) - eh_Om(n)
dem2 = eQP(p) + eQP(i) - eQP(a) - eQP(b)
reg1 = (1d0 - exp(- 2d0 * eta * dem1 * dem1))
reg2 = (1d0 - exp(- 2d0 * eta * dem2 * dem2))
SigC(p) = SigC(p) + num * (reg1/dem1) * (reg2/dem2)
Z(p) = Z(p) - num * (reg1/dem1) * (reg2/dem2/dem2)
end do ! b
end do ! n
end do ! a
end do ! i
end do ! p
call wall_time(end_t)
t = end_t - start_t
write(*,'(1X,A50,1X,F9.3,A8)') 'Wall time for building eh self-energy =',t,' seconds'
write(*,*)
!-----------------------------!
! pp part of the self-energy !
!-----------------------------!
call wall_time(start_t)
do p=nC+1,nOrb-nR
do i=nC+1,nO
do j=nC+1,nO
do n=1,nVV
! 4h1p
do k=nC+1,nO
num = ERI(p,k,i,j) * ee_rho(i,j,n) * ee_rho(p,k,n)
dem1 = ee_Om(n) - eQP(i) - eQP(j)
dem2 = eQP(p) + eQP(k) - ee_Om(n)
reg1 = (1d0 - exp(- 2d0 * eta * dem1 * dem1))
reg2 = (1d0 - exp(- 2d0 * eta * dem2 * dem2))
SigC(p) = SigC(p) - num * (reg1/dem1) * (reg2/dem2)
Z(p) = Z(p) + num * (reg1/dem1) * (reg2/dem2/dem2)
end do ! k
! 3h2p
do c=nO+1,nOrb-nR
num = ERI(p,c,i,j) * ee_rho(i,j,n) * ee_rho(p,c,n)
dem1 = ee_Om(n) - eQP(i) - eQP(j)
dem2 = eQP(p) + eQP(c) - eQP(i) - eQP(j)
reg1 = (1d0 - exp(- 2d0 * eta * dem1 * dem1))
reg2 = (1d0 - exp(- 2d0 * eta * dem2 * dem2))
SigC(p) = SigC(p) - num * (reg1/dem1) * (reg2/dem2)
Z(p) = Z(p) + num * (reg1/dem1) * (reg2/dem2/dem2)
end do ! a
end do ! n
do n=1,nOO
! 3h2p
do c=nO+1,nOrb-nR
num = ERI(p,c,i,j) * hh_rho(i,j,n) * hh_rho(p,c,n)
dem1 = hh_Om(n) - eQP(i) - eQP(j)
dem2 = eQP(p) + eQP(c) - hh_Om(n)
reg1 = (1d0 - exp(- 2d0 * eta * dem1 * dem1))
reg2 = (1d0 - exp(- 2d0 * eta * dem2 * dem2))
SigC(p) = SigC(p) - num * (reg1/dem1) * (reg2/dem2)
Z(p) = Z(p) + num * (reg1/dem1) * (reg2/dem2/dem2)
num = ERI(p,c,i,j) * hh_rho(i,j,n) * hh_rho(p,c,n)
dem1 = hh_Om(n) - eQP(i) - eQP(j)
dem2 = eQP(p) + eQP(c) - eQP(i) - eQP(j)
reg1 = (1d0 - exp(- 2d0 * eta * dem1 * dem1))
reg2 = (1d0 - exp(- 2d0 * eta * dem2 * dem2))
SigC(p) = SigC(p) + num * (reg1/dem1) * (reg2/dem2)
Z(p) = Z(p) - num * (reg1/dem1) * (reg2/dem2/dem2)
end do ! c
end do ! n
end do ! j
end do ! i
do a=nO+1,nOrb-nR
do b=nO+1,nOrb-nR
do n=1,nOO
! 4p1h
do c=nO+1,nOrb-nR
num = ERI(p,c,a,b) * hh_rho(a,b,n) * hh_rho(p,c,n)
dem1 = hh_Om(n) - eQP(a) - eQP(b)
dem2 = eQP(p) + eQP(c) - hh_Om(n)
reg1 = (1d0 - exp(- 2d0 * eta * dem1 * dem1))
reg2 = (1d0 - exp(- 2d0 * eta * dem2 * dem2))
SigC(p) = SigC(p) - num * (reg1/dem1) * (reg2/dem2)
Z(p) = Z(p) + num * (reg1/dem1) * (reg2/dem2/dem2)
end do ! c
! 3p2h
do k=nC+1,nO
num = ERI(p,k,a,b) * hh_rho(a,b,n) * hh_rho(p,k,n)
dem1 = hh_Om(n) - eQP(a) - eQP(b)
dem2 = eQP(p) + eQP(k) - eQP(a) - eQP(b)
reg1 = (1d0 - exp(- 2d0 * eta * dem1 * dem1))
reg2 = (1d0 - exp(- 2d0 * eta * dem2 * dem2))
SigC(p) = SigC(p) - num * (reg1/dem1) * (reg2/dem2)
Z(p) = Z(p) + num * (reg1/dem1) * (reg2/dem2/dem2)
end do ! k
end do ! n
do n=1,nVV
! 3p2h
do k=nC+1,nO
num = ERI(p,k,a,b) * ee_rho(a,b,n) * ee_rho(p,k,n)
dem1 = ee_Om(n) - eQP(a) - eQP(b)
dem2 = eQP(p) + eQP(k) - ee_Om(n)
reg1 = (1d0 - exp(- 2d0 * eta * dem1 * dem1))
reg2 = (1d0 - exp(- 2d0 * eta * dem2 * dem2))
SigC(p) = SigC(p) - num * (reg1/dem1) * (reg2/dem2)
Z(p) = Z(p) + num * (reg1/dem1) * (reg2/dem2/dem2)
num = ERI(p,k,a,b) * ee_rho(a,b,n) * ee_rho(p,k,n)
dem1 = ee_Om(n) - eQP(a) - eQP(b)
dem2 = eQP(p) + eQP(k) - eQP(a) - eQP(b)
reg1 = (1d0 - exp(- 2d0 * eta * dem1 * dem1))
reg2 = (1d0 - exp(- 2d0 * eta * dem2 * dem2))
SigC(p) = SigC(p) + num * (reg1/dem1) * (reg2/dem2)
Z(p) = Z(p) - num * (reg1/dem1) * (reg2/dem2/dem2)
end do ! c
end do ! n
end do ! b
end do ! a
end do ! p
call wall_time(end_t)
t = end_t - start_t
write(*,'(1X,A50,1X,F9.3,A8)') 'Wall time for building pp self-energy =',t,' seconds'
write(*,*)
!-----------------------------!
! Renormalization factor !
!-----------------------------!
Z(:) = 1d0/(1d0 - Z(:))
end subroutine