mirror of
https://github.com/pfloos/quack
synced 2025-05-06 15:14:55 +02:00
389 lines
12 KiB
Fortran
389 lines
12 KiB
Fortran
subroutine complex_qsRGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2, &
|
|
TDA_W,TDA,dBSE,dTDA,doppBSE,singlet,triplet,eta,doSRG,nNuc,ZNuc,rNuc, &
|
|
ENuc,nBas,nOrb,nC,nO,nV,nR,nS,ERHF,S,X,T,V,Hc,ERI_AO, &
|
|
ERI_MO,dipole_int_AO,dipole_int_MO,PHF,cHF,eHF, &
|
|
CAP_AO,CAP_MO)
|
|
|
|
! Perform a quasiparticle self-consistent GW calculation
|
|
|
|
implicit none
|
|
include 'parameters.h'
|
|
|
|
! Input variables
|
|
|
|
logical,intent(in) :: dotest
|
|
|
|
integer,intent(in) :: maxSCF
|
|
integer,intent(in) :: max_diis
|
|
double precision,intent(in) :: thresh
|
|
logical,intent(in) :: doACFDT
|
|
logical,intent(in) :: exchange_kernel
|
|
logical,intent(in) :: doXBS
|
|
logical,intent(in) :: dophBSE
|
|
logical,intent(in) :: dophBSE2
|
|
logical,intent(in) :: TDA_W
|
|
logical,intent(in) :: TDA
|
|
logical,intent(in) :: dBSE
|
|
logical,intent(in) :: dTDA
|
|
logical,intent(in) :: doppBSE
|
|
logical,intent(in) :: singlet
|
|
logical,intent(in) :: triplet
|
|
double precision,intent(in) :: eta
|
|
logical,intent(in) :: doSRG
|
|
|
|
integer,intent(in) :: nNuc
|
|
double precision,intent(in) :: ZNuc(nNuc)
|
|
double precision,intent(in) :: rNuc(nNuc,ncart)
|
|
double precision,intent(in) :: ENuc
|
|
|
|
integer,intent(in) :: nBas
|
|
integer,intent(in) :: nOrb
|
|
integer,intent(in) :: nC
|
|
integer,intent(in) :: nO
|
|
integer,intent(in) :: nV
|
|
integer,intent(in) :: nR
|
|
integer,intent(in) :: nS
|
|
complex*16,intent(in) :: ERHF
|
|
complex*16,intent(in) :: eHF(nOrb)
|
|
complex*16,intent(in) :: cHF(nBas,nOrb)
|
|
complex*16,intent(in) :: PHF(nBas,nBas)
|
|
double precision,intent(in) :: S(nBas,nBas)
|
|
double precision,intent(in) :: T(nBas,nBas)
|
|
double precision,intent(in) :: V(nBas,nBas)
|
|
double precision,intent(in) :: Hc(nBas,nBas)
|
|
double precision,intent(in) :: X(nBas,nBas)
|
|
double precision,intent(in) :: CAP_AO(nBas,nBas)
|
|
complex*16,intent(inout) :: CAP_MO(nBas,nBas)
|
|
double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas)
|
|
complex*16,intent(inout) :: ERI_MO(nOrb,nOrb,nOrb,nOrb)
|
|
double precision,intent(in) :: dipole_int_AO(nBas,nBas,ncart)
|
|
complex*16,intent(inout) :: dipole_int_MO(nOrb,nOrb,ncart)
|
|
|
|
! Local variables
|
|
|
|
integer :: nSCF
|
|
integer :: nBas_Sq
|
|
integer :: ispin
|
|
integer :: ixyz
|
|
integer :: n_diis
|
|
complex*16 :: ET
|
|
complex*16 :: EV
|
|
complex*16 :: EJ
|
|
complex*16 :: EK
|
|
complex*16 :: EqsGW
|
|
complex*16 :: EW
|
|
complex*16 :: EcRPA
|
|
complex*16 :: EcBSE(nspin)
|
|
complex*16 :: EcGM
|
|
double precision :: Conv
|
|
double precision :: rcond
|
|
complex*16,external :: complex_trace_matrix
|
|
complex*16 :: dipole(ncart)
|
|
|
|
double precision :: flow
|
|
|
|
logical :: dRPA_W = .true.
|
|
logical :: print_W = .false.
|
|
complex*16,allocatable :: err_diis(:,:)
|
|
complex*16,allocatable :: F_diis(:,:)
|
|
complex*16,allocatable :: Aph(:,:)
|
|
complex*16,allocatable :: Bph(:,:)
|
|
complex*16,allocatable :: Om(:)
|
|
complex*16,allocatable :: XpY(:,:)
|
|
complex*16,allocatable :: XmY(:,:)
|
|
complex*16,allocatable :: rho(:,:,:)
|
|
complex*16,allocatable :: c(:,:)
|
|
complex*16,allocatable :: cp(:,:)
|
|
complex*16,allocatable :: eGW(:)
|
|
complex*16,allocatable :: P(:,:)
|
|
complex*16,allocatable :: F(:,:)
|
|
complex*16,allocatable :: Fp(:,:)
|
|
complex*16,allocatable :: J(:,:)
|
|
complex*16,allocatable :: K(:,:)
|
|
complex*16,allocatable :: SigC(:,:)
|
|
complex*16,allocatable :: SigCp(:,:)
|
|
complex*16,allocatable :: Z(:)
|
|
complex*16,allocatable :: err(:,:)
|
|
|
|
! Hello world
|
|
|
|
write(*,*)
|
|
write(*,*)'*******************************'
|
|
write(*,*)'* Restricted qsGW Calculation *'
|
|
write(*,*)'*******************************'
|
|
write(*,*)
|
|
|
|
! Warning
|
|
|
|
write(*,*) '!! ERIs and CAP in MO basis will be overwritten in qsGW !!'
|
|
write(*,*)
|
|
|
|
! Stuff
|
|
|
|
nBas_Sq = nBas*nBas
|
|
|
|
! TDA for W
|
|
|
|
if(TDA_W) then
|
|
write(*,*) 'Tamm-Dancoff approximation for dynamical screening!'
|
|
write(*,*)
|
|
end if
|
|
|
|
! SRG regularization
|
|
|
|
flow = 500d0
|
|
|
|
if(doSRG) then
|
|
|
|
write(*,*) '*** SRG regularized qsGW scheme ***'
|
|
write(*,*)
|
|
|
|
end if
|
|
|
|
! Memory allocation
|
|
|
|
allocate(eGW(nOrb))
|
|
allocate(Z(nOrb))
|
|
|
|
allocate(c(nBas,nOrb))
|
|
|
|
allocate(cp(nOrb,nOrb))
|
|
allocate(Fp(nOrb,nOrb))
|
|
allocate(SigC(nOrb,nOrb))
|
|
|
|
allocate(P(nBas,nBas))
|
|
allocate(F(nBas,nBas))
|
|
allocate(J(nBas,nBas))
|
|
allocate(K(nBas,nBas))
|
|
allocate(err(nBas,nBas))
|
|
allocate(SigCp(nBas,nBas))
|
|
|
|
allocate(Aph(nS,nS))
|
|
allocate(Bph(nS,nS))
|
|
allocate(Om(nS))
|
|
allocate(XpY(nS,nS))
|
|
allocate(XmY(nS,nS))
|
|
allocate(rho(nOrb,nOrb,nS))
|
|
|
|
allocate(err_diis(nBas_Sq,max_diis))
|
|
allocate(F_diis(nBas_Sq,max_diis))
|
|
|
|
! Initialization
|
|
|
|
nSCF = -1
|
|
n_diis = 0
|
|
ispin = 1
|
|
Conv = 1d0
|
|
P(:,:) = PHF(:,:)
|
|
eGW(:) = eHF(:)
|
|
c(:,:) = cHF(:,:)
|
|
F_diis(:,:) = 0d0
|
|
err_diis(:,:) = 0d0
|
|
rcond = 0d0
|
|
|
|
!------------------------------------------------------------------------
|
|
! Main loop
|
|
!------------------------------------------------------------------------
|
|
|
|
do while(Conv > thresh .and. nSCF <= maxSCF)
|
|
|
|
! Increment
|
|
|
|
nSCF = nSCF + 1
|
|
|
|
! Build Hartree-exchange matrix
|
|
|
|
call complex_Hartree_matrix_AO_basis(nBas,P,ERI_AO,J)
|
|
call complex_exchange_matrix_AO_basis(nBas,P,ERI_AO,K)
|
|
|
|
! AO to MO transformation of two-electron integrals
|
|
|
|
do ixyz=1,ncart
|
|
call complex_AOtoMO(nBas,nOrb,c,dipole_int_AO(1,1,ixyz),dipole_int_MO(1,1,ixyz))
|
|
end do
|
|
|
|
call complex_AOtoMO_ERI_RHF(nBas,nOrb,c,ERI_AO,ERI_MO)
|
|
|
|
! Compute linear response
|
|
|
|
call complex_phRLR_A(ispin,dRPA_W,nOrb,nC,nO,nV,nR,nS,1d0,eGW,ERI_MO,Aph)
|
|
if(.not.TDA_W) call complex_phRLR_B(ispin,dRPA_W,nOrb,nC,nO,nV,nR,nS,1d0,ERI_MO,Bph)
|
|
|
|
call complex_phRLR(TDA_W,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
|
|
if(print_W) call print_excitation_energies('phRPA@GW@RHF','singlet',nS,Om)
|
|
|
|
call complex_RGW_excitation_density(nOrb,nC,nO,nR,nS,ERI_MO,XpY,rho)
|
|
|
|
if(doSRG) then
|
|
write(*,*) "SRG not implemented"
|
|
!call complex_RGW_SRG_self_energy(flow,nBas,nOrb,nC,nO,nV,nR,nS,eGW,Om,rho,EcGM,SigC,Z)
|
|
else
|
|
call complex_RGW_self_energy(eta,nBas,nOrb,nC,nO,nV,nR,nS,eGW,Om,rho,&
|
|
EcGM,SigC,Z)
|
|
end if
|
|
! Make correlation self-energy Hermitian and transform it back to AO basis
|
|
|
|
SigC = 0.5d0*(SigC + transpose(SigC))
|
|
|
|
call complex_MOtoAO(nBas,nOrb,S,c,SigC,SigCp)
|
|
|
|
! Solve the quasi-particle equation
|
|
|
|
F(:,:) = cmplx(Hc(:,:),CAP_AO(:,:),kind=8) + J(:,:) + 0.5d0*K(:,:) + SigCp(:,:)
|
|
if(nBas .ne. nOrb) then
|
|
call complex_complex_AOtoMO(nBas,nOrb,c(1,1),F(1,1),Fp(1,1))
|
|
call complex_MOtoAO(nBas,nOrb,S(1,1),c(1,1),Fp(1,1),F(1,1))
|
|
endif
|
|
|
|
! Compute commutator and convergence criteria
|
|
|
|
err = matmul(F,matmul(P,S)) - matmul(matmul(S,P),F)
|
|
|
|
if(nSCF > 1) Conv = maxval(abs(err))
|
|
|
|
! Kinetic energy
|
|
|
|
ET = complex_trace_matrix(nBas,matmul(P,T))
|
|
|
|
! Potential energy
|
|
|
|
EV = complex_trace_matrix(nBas,matmul(P,V))
|
|
|
|
! Hartree energy
|
|
|
|
EJ = 0.5d0*complex_trace_matrix(nBas,matmul(P,J))
|
|
|
|
! Exchange energy
|
|
|
|
EK = 0.25d0*complex_trace_matrix(nBas,matmul(P,K))
|
|
|
|
! CAP energy
|
|
|
|
EW = complex_trace_matrix(nBas,matmul(P,(0d0,1d0)*CAP_AO))
|
|
|
|
! Total energy
|
|
|
|
EqsGW = ET + EV + EJ + EK + EW
|
|
|
|
! DIIS extrapolation
|
|
|
|
if(max_diis > 1) then
|
|
|
|
n_diis = min(n_diis+1,max_diis)
|
|
call complex_DIIS_extrapolation(rcond,nBas_Sq,nBas_Sq,n_diis,err_diis,F_diis,err,F)
|
|
|
|
end if
|
|
|
|
! Diagonalize Hamiltonian in AO basis
|
|
|
|
if(nBas .eq. nOrb) then
|
|
Fp = matmul(transpose(X),matmul(F,X))
|
|
cp(:,:) = Fp(:,:)
|
|
call complex_diagonalize_matrix(nOrb,cp,eGW)
|
|
call complex_orthogonalize_matrix(nBas,cp)
|
|
c = matmul(X,cp)
|
|
else
|
|
Fp = matmul(transpose(c),matmul(F,c))
|
|
cp(:,:) = Fp(:,:)
|
|
call complex_diagonalize_matrix(nOrb,cp,eGW)
|
|
call complex_orthogonalize_matrix(nBas,cp)
|
|
c = matmul(c,cp)
|
|
endif
|
|
|
|
call complex_complex_AOtoMO(nBas,nOrb,c,SigCp,SigC)
|
|
! Density matrix
|
|
|
|
P(:,:) = 2d0*matmul(c(:,1:nO),transpose(c(:,1:nO)))
|
|
|
|
! Print results
|
|
|
|
call dipole_moment(nBas,P,nNuc,ZNuc,rNuc,dipole_int_AO,dipole)
|
|
call print_complex_qsRGW(nBas,nOrb,nO,nSCF,Conv,thresh,eHF,eGW,c,SigC,Z, &
|
|
ENuc,ET,EV,EW,EJ,EK,EcGM,EcRPA,EqsGW,dipole)
|
|
|
|
end do
|
|
!------------------------------------------------------------------------
|
|
! End main loop
|
|
!------------------------------------------------------------------------
|
|
|
|
! Did it actually converge?
|
|
|
|
! if(nSCF == maxSCF+1) then
|
|
!
|
|
! write(*,*)
|
|
! write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
|
|
! write(*,*)' Convergence failed '
|
|
! write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
|
|
! write(*,*)
|
|
!
|
|
! deallocate(c,cp,P,F,Fp,J,K,SigC,SigCp,Z,Om,XpY,XmY,rho,err,err_diis,F_diis)
|
|
! stop
|
|
!
|
|
! end if
|
|
!
|
|
!! Deallocate memory
|
|
!
|
|
! deallocate(c,cp,P,F,Fp,J,K,SigC,SigCp,Z,Om,XpY,XmY,rho,err,err_diis,F_diis)
|
|
!
|
|
!! Perform BSE calculation
|
|
!
|
|
! if(dophBSE) then
|
|
!
|
|
! call RGW_phBSE(dophBSE2,exchange_kernel,TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta, &
|
|
! nOrb,nC,nO,nV,nR,nS,ERI_MO,dipole_int_MO,eGW,eGW,EcBSE)
|
|
!
|
|
! write(*,*)
|
|
! write(*,*)'-------------------------------------------------------------------------------'
|
|
! write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@qsGW@RHF correlation energy (singlet) = ',EcBSE(1),' au'
|
|
! write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@qsGW@RHF correlation energy (triplet) = ',EcBSE(2),' au'
|
|
! write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@qsGW@RHF correlation energy = ',sum(EcBSE),' au'
|
|
! write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@qsGW@RHF total energy = ',ENuc + EqsGW + sum(EcBSE),' au'
|
|
! write(*,*)'-------------------------------------------------------------------------------'
|
|
! write(*,*)
|
|
!
|
|
!! Compute the BSE correlation energy via the adiabatic connection
|
|
!
|
|
! if(doACFDT) then
|
|
!
|
|
! call RGW_phACFDT(exchange_kernel,doXBS,TDA_W,TDA,singlet,triplet,eta,nOrb,nC,nO,nV,nR,nS,ERI_MO,eGW,eGW,EcBSE)
|
|
!
|
|
! write(*,*)
|
|
! write(*,*)'-------------------------------------------------------------------------------'
|
|
! write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@qsGW@RHF correlation energy (singlet) = ',EcBSE(1),' au'
|
|
! write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@qsGW@RHF correlation energy (triplet) = ',EcBSE(2),' au'
|
|
! write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@qsGW@RHF correlation energy = ',sum(EcBSE),' au'
|
|
! write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@qsGW@RHF total energy = ',ENuc + EqsGW + sum(EcBSE),' au'
|
|
! write(*,*)'-------------------------------------------------------------------------------'
|
|
! write(*,*)
|
|
!
|
|
! end if
|
|
!
|
|
! end if
|
|
!
|
|
! if(doppBSE) then
|
|
!
|
|
! call RGW_ppBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nOrb,nC,nO,nV,nR,nS,ERI_MO,dipole_int_MO,eHF,eGW,EcBSE)
|
|
!
|
|
! write(*,*)
|
|
! write(*,*)'-------------------------------------------------------------------------------'
|
|
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@qsGW@RHF correlation energy (singlet) = ',EcBSE(1),' au'
|
|
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@qsGW@RHF correlation energy (triplet) = ',EcBSE(2),' au'
|
|
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@qsGW@RHF correlation energy = ',sum(EcBSE),' au'
|
|
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@qsGW@RHF total energy = ',ENuc + ERHF + sum(EcBSE),' au'
|
|
! write(*,*)'-------------------------------------------------------------------------------'
|
|
! write(*,*)
|
|
!
|
|
! end if
|
|
!
|
|
!! Testing zone
|
|
!
|
|
! if(dotest) then
|
|
!
|
|
! call dump_test_value('R','qsGW correlation energy',EcRPA)
|
|
! call dump_test_value('R','qsGW HOMO energy',eGW(nO))
|
|
! call dump_test_value('R','qsGW LUMO energy',eGW(nO+1))
|
|
!
|
|
! end if
|
|
!
|
|
end subroutine
|