mirror of
https://github.com/pfloos/quack
synced 2025-01-10 13:08:19 +01:00
141 lines
3.8 KiB
Fortran
141 lines
3.8 KiB
Fortran
subroutine GW_ppBSE_dynamic_kernel_D(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,lambda,eGW,Om,rho,OmBSE,KD_dyn,ZD_dyn)
|
|
|
|
! Compute the dynamic part of the Bethe-Salpeter equation matrices
|
|
|
|
implicit none
|
|
include 'parameters.h'
|
|
|
|
! Input variables
|
|
|
|
integer,intent(in) :: ispin
|
|
integer,intent(in) :: nBas
|
|
integer,intent(in) :: nC
|
|
integer,intent(in) :: nO
|
|
integer,intent(in) :: nV
|
|
integer,intent(in) :: nR
|
|
integer,intent(in) :: nS
|
|
integer,intent(in) :: nOO
|
|
double precision,intent(in) :: eta
|
|
double precision,intent(in) :: lambda
|
|
double precision,intent(in) :: eGW(nBas)
|
|
double precision,intent(in) :: Om(nS)
|
|
double precision,intent(in) :: rho(nBas,nBas,nS)
|
|
double precision,intent(in) :: OmBSE
|
|
|
|
! Local variables
|
|
|
|
double precision :: dem,num
|
|
integer :: m
|
|
integer :: i,j,k,l
|
|
integer :: ij,kl
|
|
|
|
! Output variables
|
|
|
|
double precision,intent(out) :: KD_dyn(nOO,nOO)
|
|
double precision,intent(out) :: ZD_dyn(nOO,nOO)
|
|
|
|
! Initialization
|
|
|
|
KD_dyn(:,:) = 0d0
|
|
ZD_dyn(:,:) = 0d0
|
|
|
|
! Build dynamic A matrix
|
|
|
|
if(ispin == 1) then
|
|
|
|
ij = 0
|
|
do i=nC+1,nO
|
|
do j=i,nO
|
|
ij = ij + 1
|
|
|
|
kl = 0
|
|
do k=nC+1,nO
|
|
do l=k,nO
|
|
kl = kl + 1
|
|
|
|
do m=1,nS
|
|
|
|
dem = - OmBSE + eGW(k) - Om(m) + eGW(j)
|
|
num = rho(i,k,m)*rho(j,l,m)
|
|
|
|
KD_dyn(ij,kl) = KD_dyn(ij,kl) + num*dem/(dem**2 + eta**2)
|
|
ZD_dyn(ij,kl) = ZD_dyn(ij,kl) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
dem = - OmBSE + eGW(k) - Om(m) + eGW(i)
|
|
num = rho(j,k,m)*rho(i,l,m)
|
|
|
|
KD_dyn(ij,kl) = KD_dyn(ij,kl) - num*dem/(dem**2 + eta**2)
|
|
ZD_dyn(ij,kl) = ZD_dyn(ij,kl) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
dem = - OmBSE + eGW(l) - Om(m) + eGW(i)
|
|
num = rho(i,k,m)*rho(j,l,m)
|
|
|
|
KD_dyn(ij,kl) = KD_dyn(ij,kl) + num*dem/(dem**2 + eta**2)
|
|
ZD_dyn(ij,kl) = ZD_dyn(ij,kl) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
dem = - OmBSE + eGW(l) - Om(m) + eGW(j)
|
|
num = rho(j,k,m)*rho(i,l,m)
|
|
|
|
KD_dyn(ij,kl) = KD_dyn(ij,kl) - num*dem/(dem**2 + eta**2)
|
|
ZD_dyn(ij,kl) = ZD_dyn(ij,kl) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
end do
|
|
|
|
end do
|
|
end do
|
|
|
|
end do
|
|
end do
|
|
|
|
end if
|
|
|
|
if(ispin == 2) then
|
|
|
|
ij = 0
|
|
do i=nC+1,nO
|
|
do j=i+1,nO
|
|
ij = ij + 1
|
|
|
|
kl = 0
|
|
do k=nC+1,nO
|
|
do l=k+1,nO
|
|
kl = kl + 1
|
|
|
|
do m=1,nS
|
|
|
|
dem = - OmBSE + eGW(k) - Om(m) + eGW(j)
|
|
num = rho(i,k,m)*rho(j,l,m)
|
|
|
|
KD_dyn(ij,kl) = KD_dyn(ij,kl) + num*dem/(dem**2 + eta**2)
|
|
ZD_dyn(ij,kl) = ZD_dyn(ij,kl) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
dem = - OmBSE + eGW(k) - Om(m) + eGW(i)
|
|
num = rho(j,k,m)*rho(i,l,m)
|
|
|
|
KD_dyn(ij,kl) = KD_dyn(ij,kl) - num*dem/(dem**2 + eta**2)
|
|
ZD_dyn(ij,kl) = ZD_dyn(ij,kl) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
dem = - OmBSE + eGW(l) - Om(m) + eGW(i)
|
|
num = rho(i,k,m)*rho(j,l,m)
|
|
|
|
KD_dyn(ij,kl) = KD_dyn(ij,kl) + num*dem/(dem**2 + eta**2)
|
|
ZD_dyn(ij,kl) = ZD_dyn(ij,kl) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
dem = - OmBSE + eGW(l) - Om(m) + eGW(j)
|
|
num = rho(j,k,m)*rho(i,l,m)
|
|
|
|
KD_dyn(ij,kl) = KD_dyn(ij,kl) - num*dem/(dem**2 + eta**2)
|
|
ZD_dyn(ij,kl) = ZD_dyn(ij,kl) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
end do
|
|
|
|
end do
|
|
end do
|
|
|
|
end do
|
|
end do
|
|
|
|
end if
|
|
|
|
end subroutine
|