mirror of
https://github.com/pfloos/quack
synced 2024-12-31 08:35:51 +01:00
164 lines
6.3 KiB
Python
164 lines
6.3 KiB
Python
#!/usr/bin/env python
|
|
|
|
import os, sys
|
|
import argparse
|
|
import pyscf
|
|
from pyscf import gto
|
|
import numpy as np
|
|
import subprocess
|
|
|
|
#Find the value of the environnement variable QUACK_ROOT. If not present we use the current repository
|
|
if "QUACK_ROOT" not in os.environ:
|
|
print("Please set the QUACK_ROOT environment variable, for example:\n")
|
|
print("$ export QUACK_ROOT={0}".format(os.getcwd()))
|
|
sys.exit(1)
|
|
QuAcK_dir=os.environ.get('QUACK_ROOT','./')
|
|
|
|
#Create the argument parser object and gives a description of the script
|
|
parser = argparse.ArgumentParser(description='This script is the main script of QuAcK, it is used to run the calculation.\n If $QUACK_ROOT is not set, $QUACK_ROOT is replaces by the current directory.')
|
|
|
|
#Initialize all the options for the script
|
|
parser.add_argument('-b', '--basis', type=str, required=True, help='Name of the file containing the basis set in the $QUACK_ROOT/basis/ directory')
|
|
parser.add_argument('--bohr', default='Angstrom', action='store_const', const='Bohr', help='By default QuAcK assumes that the xyz files are in Angstrom. Add this argument if your xyz file is in Bohr.')
|
|
parser.add_argument('-c', '--charge', type=int, default=0, help='Total charge of the molecule. Specify negative charges with "m" instead of the minus sign, for example m1 instead of -1. Default is 0')
|
|
parser.add_argument('--cartesian', default=False, action='store_true', help='Add this option if you want to use cartesian basis functions.')
|
|
parser.add_argument('--print_2e', default=False, action='store_true', help='Add this option if you want to print 2e-integrals.')
|
|
parser.add_argument('-fc', '--frozen_core', type=bool, default=False, help='Freeze core MOs. Default is false')
|
|
parser.add_argument('-m', '--multiplicity', type=int, default=1, help='Spin multiplicity. Default is 1 therefore singlet')
|
|
parser.add_argument('--working_dir', type=str, default=QuAcK_dir, help='Set a working directory to run the calculation.')
|
|
parser.add_argument('-x', '--xyz', type=str, required=True, help='Name of the file containing the nuclear coordinates in xyz format in the $QUACK_ROOT/mol/ directory without the .xyz extension')
|
|
|
|
#Parse the arguments
|
|
args = parser.parse_args()
|
|
input_basis=args.basis
|
|
unit=args.bohr
|
|
charge=args.charge
|
|
frozen_core=args.frozen_core
|
|
multiplicity=args.multiplicity
|
|
xyz=args.xyz + '.xyz'
|
|
cartesian=args.cartesian
|
|
print_2e=args.print_2e
|
|
working_dir=args.working_dir
|
|
|
|
#Read molecule
|
|
f = open(working_dir+'/mol/'+xyz,'r')
|
|
lines = f.read().splitlines()
|
|
nbAt = int(lines.pop(0))
|
|
lines.pop(0)
|
|
list_pos_atom = []
|
|
for line in lines:
|
|
tmp = line.split()
|
|
atom = tmp[0]
|
|
pos = (float(tmp[1]),float(tmp[2]),float(tmp[3]))
|
|
list_pos_atom.append([atom,pos])
|
|
f.close()
|
|
|
|
#Definition of the molecule
|
|
mol = gto.M(
|
|
atom = list_pos_atom,
|
|
basis = input_basis,
|
|
charge = charge,
|
|
spin = multiplicity - 1
|
|
)
|
|
|
|
#Fix the unit for the lengths
|
|
mol.unit=unit
|
|
#
|
|
mol.cart = cartesian
|
|
|
|
#Update mol object
|
|
mol.build()
|
|
|
|
#Accessing number of electrons
|
|
nelec=mol.nelec #Access the number of electrons
|
|
nalpha=nelec[0]
|
|
nbeta=nelec[1]
|
|
|
|
subprocess.call(['mkdir', '-p', working_dir+'/input'])
|
|
f = open(working_dir+'/input/molecule','w')
|
|
f.write('# nAt nEla nElb nCore nRyd\n')
|
|
f.write(str(mol.natm)+' '+str(nalpha)+' '+str(nbeta)+' '+str(0)+' '+str(0)+'\n')
|
|
f.write('# Znuc x y z\n')
|
|
for i in range(len(list_pos_atom)):
|
|
f.write(list_pos_atom[i][0]+' '+str(list_pos_atom[i][1][0])+' '+str(list_pos_atom[i][1][1])+' '+str(list_pos_atom[i][1][2])+'\n')
|
|
f.close()
|
|
|
|
#Compute nuclear energy and put it in a file
|
|
subprocess.call(['mkdir', '-p', working_dir+'/int'])
|
|
subprocess.call(['rm', '-f', working_dir + '/int/ENuc.dat'])
|
|
f = open(working_dir+'/int/ENuc.dat','w')
|
|
f.write(str(mol.energy_nuc()))
|
|
f.write(' ')
|
|
f.close()
|
|
|
|
#Compute 1e integrals
|
|
ovlp = mol.intor('int1e_ovlp')#Overlap matrix elements
|
|
v1e = mol.intor('int1e_nuc') #Nuclear repulsion matrix elements
|
|
t1e = mol.intor('int1e_kin') #Kinetic energy matrix elements
|
|
dipole = mol.intor('int1e_r') #Matrix elements of the x, y, z operators
|
|
x,y,z = dipole[0],dipole[1],dipole[2]
|
|
|
|
norb = len(ovlp) # nBAS_AOs
|
|
subprocess.call(['rm', '-f', working_dir + '/int/nBas.dat'])
|
|
f = open(working_dir+'/int/nBas.dat','w')
|
|
f.write(" {} ".format(str(norb)))
|
|
f.close()
|
|
|
|
|
|
def write_matrix_to_file(matrix,size,file,cutoff=1e-15):
|
|
f = open(file, 'w')
|
|
for i in range(size):
|
|
for j in range(i,size):
|
|
if abs(matrix[i][j]) > cutoff:
|
|
f.write(str(i+1)+' '+str(j+1)+' '+"{:.16E}".format(matrix[i][j]))
|
|
f.write('\n')
|
|
f.close()
|
|
|
|
#Write all 1 electron quantities in files
|
|
#Ov,Nuc,Kin,x,y,z
|
|
subprocess.call(['rm', '-f', working_dir + '/int/Ov.dat'])
|
|
write_matrix_to_file(ovlp,norb,working_dir+'/int/Ov.dat')
|
|
subprocess.call(['rm', '-f', working_dir + '/int/Nuc.dat'])
|
|
write_matrix_to_file(v1e,norb,working_dir+'/int/Nuc.dat')
|
|
subprocess.call(['rm', '-f', working_dir + '/int/Kin.dat'])
|
|
write_matrix_to_file(t1e,norb,working_dir+'/int/Kin.dat')
|
|
subprocess.call(['rm', '-f', working_dir + '/int/x.dat'])
|
|
write_matrix_to_file(x,norb,working_dir+'/int/x.dat')
|
|
subprocess.call(['rm', '-f', working_dir + '/int/y.dat'])
|
|
write_matrix_to_file(y,norb,working_dir+'/int/y.dat')
|
|
subprocess.call(['rm', '-f', working_dir + '/int/z.dat'])
|
|
write_matrix_to_file(z,norb,working_dir+'/int/z.dat')
|
|
|
|
eri_ao = mol.intor('int2e')
|
|
|
|
def write_tensor_to_file(tensor,size,file,cutoff=1e-15):
|
|
f = open(file, 'w')
|
|
for i in range(size):
|
|
for j in range(i,size):
|
|
for k in range(i,size):
|
|
for l in range(j,size):
|
|
if abs(tensor[i][k][j][l]) > cutoff:
|
|
#f.write(str(i+1)+' '+str(j+1)+' '+str(k+1)+' '+str(l+1)+' '+"{:.16E}".format(tensor[i][k][j][l]))
|
|
f.write(str(i+1)+' '+str(j+1)+' '+str(k+1)+' '+str(l+1)+' '+"{:.16E}".format(tensor[i][k][j][l]))
|
|
f.write('\n')
|
|
f.close()
|
|
|
|
# Write two-electron integrals
|
|
if print_2e:
|
|
# (formatted)
|
|
subprocess.call(['rm', '-f', working_dir + '/int/ERI.dat'])
|
|
write_tensor_to_file(eri_ao, norb, working_dir + '/int/ERI.dat')
|
|
else:
|
|
# (binary)
|
|
subprocess.call(['rm', '-f', working_dir + '/int/ERI.bin'])
|
|
# chem -> phys notation
|
|
eri_ao = eri_ao.transpose(0, 2, 1, 3)
|
|
f = open(working_dir + '/int/ERI.bin', 'w')
|
|
eri_ao.tofile(working_dir + '/int/ERI.bin')
|
|
f.close()
|
|
|
|
|
|
#Execute the QuAcK fortran program
|
|
subprocess.call([QuAcK_dir + '/bin/QuAcK', working_dir])
|
|
|