mirror of
https://github.com/pfloos/quack
synced 2025-01-05 10:59:38 +01:00
223 lines
6.1 KiB
Fortran
223 lines
6.1 KiB
Fortran
subroutine UGTpp_self_energy_diag(eta,nBas,nC,nO,nV,nR,nHaa,nHab,nHbb,nPaa,nPab,nPbb,e,Om1aa,Om1ab,Om1bb,&
|
|
rho1aa,rho1ab,rho1bb,Om2aa,Om2ab,Om2bb,rho2aa,rho2ab,rho2bb,EcGM,SigT,Z)
|
|
|
|
! Compute diagonal of the correlation part of the T-matrix self-energy
|
|
|
|
implicit none
|
|
include 'parameters.h'
|
|
|
|
! Input variables
|
|
|
|
double precision,intent(in) :: eta
|
|
integer,intent(in) :: nBas
|
|
integer,intent(in) :: nC(nspin)
|
|
integer,intent(in) :: nO(nspin)
|
|
integer,intent(in) :: nV(nspin)
|
|
integer,intent(in) :: nR(nspin)
|
|
integer,intent(in) :: nHaa,nHab,nHbb
|
|
integer,intent(in) :: nPaa,nPab,nPbb
|
|
double precision,intent(in) :: e(nBas,nspin)
|
|
double precision,intent(in) :: Om1aa(nPaa),Om1ab(nPab),Om1bb(nPbb)
|
|
double precision,intent(in) :: rho1aa(nBas,nBas,nPaa),rho1ab(nBas,nBas,nPab)
|
|
double precision,intent(in) :: rho1bb(nBas,nBas,nPbb)
|
|
double precision,intent(in) :: Om2aa(nHaa),Om2ab(nHab),Om2bb(nHbb)
|
|
double precision,intent(in) :: rho2aa(nBas,nBas,nHaa),rho2ab(nBas,nBas,nHab)
|
|
double precision,intent(in) :: rho2bb(nBas,nBas,nHbb)
|
|
|
|
! Local variables
|
|
|
|
integer :: i,j,a,b,p,cd,kl
|
|
double precision :: num,eps
|
|
|
|
! Output variables
|
|
|
|
double precision,intent(inout) :: EcGM(nspin)
|
|
double precision,intent(inout) :: SigT(nBas,nspin)
|
|
double precision,intent(inout) :: Z(nBas,nspin)
|
|
|
|
! Initialization
|
|
|
|
EcGM(:) = 0d0
|
|
SigT(:,:) = 0d0
|
|
Z(:,:) = 0d0
|
|
|
|
!----------------------------------------------
|
|
! Occupied part of the T-matrix self-energy
|
|
!----------------------------------------------
|
|
|
|
! spin up part
|
|
|
|
do p=nC(1)+1,nBas-nR(1)
|
|
do i=nC(1)+1,nO(1)
|
|
do cd=1,nPaa
|
|
eps = e(p,1) + e(i,1) - Om1aa(cd)
|
|
num = rho1aa(p,i,cd)**2
|
|
SigT(p,1) = SigT(p,1) + num*eps/(eps**2 + eta**2)
|
|
Z(p,1) = Z(p,1) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
|
|
end do
|
|
end do
|
|
|
|
do i=nC(2)+1,nO(2)
|
|
do cd=1,nPab
|
|
eps = e(p,1) + e(i,1) - Om1ab(cd)
|
|
num = rho1ab(p,i,cd)**2
|
|
SigT(p,1) = SigT(p,1) + num*eps/(eps**2 + eta**2)
|
|
Z(p,1) = Z(p,1) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
! spin down part
|
|
|
|
do p=nC(2)+1,nBas-nR(2)
|
|
do i=nC(2)+1,nO(2)
|
|
do cd=1,nPbb
|
|
eps = e(p,2) + e(i,2) - Om1bb(cd)
|
|
num = rho1bb(p,i,cd)**2
|
|
SigT(p,2) = SigT(p,2) + num*eps/(eps**2 + eta**2)
|
|
Z(p,2) = Z(p,2) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
|
|
end do
|
|
end do
|
|
|
|
do i=nC(2)+1,nO(2)
|
|
do cd=1,nPab
|
|
eps = e(p,2) + e(i,2) - Om1ab(cd)
|
|
num = rho1ab(p,i,cd)**2
|
|
SigT(p,2) = SigT(p,2) + num*eps/(eps**2 + eta**2)
|
|
Z(p,2) = Z(p,2) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
!----------------------------------------------
|
|
! Virtual part of the T-matrix self-energy
|
|
!----------------------------------------------
|
|
|
|
! spin up part
|
|
|
|
do p=nC(1)+1,nBas-nR(1)
|
|
do a=nO(1)+1,nBas-nR(1)
|
|
do kl=1,nHaa
|
|
eps = e(p,1) + e(a,1) - Om2aa(kl)
|
|
num = rho2aa(p,a,kl)**2
|
|
SigT(p,1) = SigT(p,1) + num*eps/(eps**2 + eta**2)
|
|
Z(p,1) = Z(p,1) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
|
|
end do
|
|
end do
|
|
|
|
do a=nO(1)+1,nBas-nR(1)
|
|
do kl=1,nHab
|
|
eps = e(p,1) + e(a,1) - Om2ab(kl)
|
|
num = rho2ab(p,a,kl)**2
|
|
SigT(p,1) = SigT(p,1) + num*eps/(eps**2 + eta**2)
|
|
Z(p,1) = Z(p,1) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
! spin down part
|
|
|
|
do p=nC(2)+1,nBas-nR(2)
|
|
do a=nO(2)+1,nBas-nR(2)
|
|
do kl=1,nHbb
|
|
eps = e(p,2) + e(a,2) - Om2bb(kl)
|
|
num = rho2bb(p,a,kl)**2
|
|
SigT(p,2) = SigT(p,2) + num*eps/(eps**2 + eta**2)
|
|
Z(p,2) = Z(p,2) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
|
|
end do
|
|
end do
|
|
|
|
do a=nO(2)+1,nBas-nR(2)
|
|
do kl=1,nHab
|
|
eps = e(p,2) + e(a,2) - Om2ab(kl)
|
|
num = rho2ab(p,a,kl)**2
|
|
SigT(p,2) = SigT(p,2) + num*eps/(eps**2 + eta**2)
|
|
Z(p,2) = Z(p,2) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
Z(:,:) = 1d0/(1d0 - Z(:,:))
|
|
|
|
!----------------------------------------------
|
|
! Galitskii-Migdal correlation energy
|
|
!----------------------------------------------
|
|
|
|
! spin up part
|
|
|
|
do i=nC(1)+1,nO(1)
|
|
do j=nC(1)+1,nO(1)
|
|
do cd=1,nPaa
|
|
eps = e(i,1) + e(j,1) - Om1aa(cd)
|
|
EcGM(1) = EcGM(1) + rho1aa(i,j,cd)*rho1aa(i,j,cd)*eps/(eps**2 + eta**2)
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
do i=nC(1)+1,nO(1)
|
|
do j=nC(2)+1,nO(2)
|
|
do cd=1,nPab
|
|
eps = e(i,1) + e(j,1) - Om1ab(cd)
|
|
EcGM(1) = EcGM(1) + rho1ab(i,j,cd)*rho1ab(i,j,cd)*eps/(eps**2 + eta**2)
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
do a=nO(1)+1,nBas-nR(1)
|
|
do b=nO(1)+1,nBas-nR(1)
|
|
do kl=1,nHaa
|
|
eps = e(a,1) + e(b,1) - Om2aa(kl)
|
|
EcGM(1) = EcGM(1) - rho2aa(a,b,kl)*rho2aa(a,b,kl)*eps/(eps**2 + eta**2)
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
do a=nO(1)+1,nBas-nR(1)
|
|
do b=nO(1)+1,nBas-nR(1)
|
|
do kl=1,nHab
|
|
eps = e(a,1) + e(b,1) - Om2ab(kl)
|
|
EcGM(1) = EcGM(1) - rho2ab(a,b,kl)*rho2ab(a,b,kl)*eps/(eps**2 + eta**2)
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
! spin down part
|
|
|
|
do i=nC(2)+1,nO(2)
|
|
do j=nC(2)+1,nO(2)
|
|
do cd=1,nPbb
|
|
eps = e(i,2) + e(j,2) - Om1bb(cd)
|
|
EcGM(2) = EcGM(2) + rho1bb(i,j,cd)*rho1bb(i,j,cd)*eps/(eps**2 + eta**2)
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
do i=nC(1)+1,nO(1)
|
|
do j=nC(2)+1,nO(2)
|
|
do cd=1,nPab
|
|
eps = e(i,2) + e(j,2) - Om1ab(cd)
|
|
EcGM(2) = EcGM(2) + rho1ab(i,j,cd)*rho1ab(i,j,cd)*eps/(eps**2 + eta**2)
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
do a=nO(1)+1,nBas-nR(1)
|
|
do b=nO(2)+1,nBas-nR(2)
|
|
do kl=1,nHab
|
|
eps = e(a,2) + e(b,2) - Om2ab(kl)
|
|
EcGM(2) = EcGM(2) - rho2ab(a,b,kl)*rho2ab(a,b,kl)*eps/(eps**2 + eta**2)
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
do a=nO(2)+1,nBas-nR(2)
|
|
do b=nO(2)+1,nBas-nR(2)
|
|
do kl=1,nHbb
|
|
eps = e(a,2) + e(b,2) - Om2bb(kl)
|
|
EcGM(2) = EcGM(2) - rho2bb(a,b,kl)*rho2bb(a,b,kl)*eps/(eps**2 + eta**2)
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
end subroutine
|