10
1
mirror of https://github.com/pfloos/quack synced 2025-04-19 06:50:20 +02:00
QuAcK/src/GT/qsRGTeh.f90
2024-09-01 15:29:33 +02:00

385 lines
11 KiB
Fortran

! ---
subroutine qsRGTeh(dotest, maxSCF, thresh, max_diis, doACFDT, exchange_kernel, doXBS, dophBSE, &
dophBSE2, TDA_T, TDA, dBSE, dTDA, singlet, triplet, eta, regularize, nNuc, &
ZNuc, rNuc, ENuc, nBas, nOrb, nC, nO, nV, nR, nS, ERHF, S, X, T, V, &
Hc, ERI_AO, ERI_MO, dipole_int_AO, dipole_int_MO, PHF, cHF, eHF)
! Perform a quasiparticle self-consistent GTeh calculation
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: dotest
integer,intent(in) :: maxSCF
integer,intent(in) :: max_diis
double precision,intent(in) :: thresh
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: doXBS
logical,intent(in) :: dophBSE
logical,intent(in) :: dophBSE2
logical,intent(in) :: TDA_T
logical,intent(in) :: TDA
logical,intent(in) :: dBSE
logical,intent(in) :: dTDA
logical,intent(in) :: singlet
logical,intent(in) :: triplet
double precision,intent(in) :: eta
logical,intent(in) :: regularize
integer,intent(in) :: nNuc
double precision,intent(in) :: ZNuc(nNuc)
double precision,intent(in) :: rNuc(nNuc,ncart)
double precision,intent(in) :: ENuc
integer,intent(in) :: nBas, nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: ERHF
double precision,intent(in) :: eHF(nOrb)
double precision,intent(in) :: cHF(nBas,nOrb)
double precision,intent(in) :: PHF(nBas,nBas)
double precision,intent(in) :: S(nBas,nBas)
double precision,intent(in) :: T(nBas,nBas)
double precision,intent(in) :: V(nBas,nBas)
double precision,intent(in) :: Hc(nBas,nBas)
double precision,intent(in) :: X(nBas,nOrb)
double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas)
double precision,intent(inout):: ERI_MO(nOrb,nOrb,nOrb,nOrb)
double precision,intent(in) :: dipole_int_AO(nBas,nBas,ncart)
double precision,intent(in) :: dipole_int_MO(nOrb,nOrb,ncart)
! Local variables
logical :: dRPA = .false.
integer :: nSCF
integer :: nBas_Sq
integer :: ispin
integer :: n_diis
double precision :: ET
double precision :: EV
double precision :: EJ
double precision :: Ex
double precision :: EqsGT
double precision :: EcRPA
double precision :: EcBSE(nspin)
double precision :: EcAC(nspin)
double precision :: EcGM
double precision :: Conv
double precision :: rcond
double precision,external :: trace_matrix
double precision :: dipole(ncart)
logical :: print_T = .true.
double precision,allocatable :: err_diis(:,:)
double precision,allocatable :: F_diis(:,:)
double precision,allocatable :: Aph(:,:)
double precision,allocatable :: Bph(:,:)
double precision,allocatable :: Om(:)
double precision,allocatable :: XpY(:,:)
double precision,allocatable :: XmY(:,:)
double precision,allocatable :: rhoL(:,:,:)
double precision,allocatable :: rhoR(:,:,:)
double precision,allocatable :: c(:,:)
double precision,allocatable :: cp(:,:)
double precision,allocatable :: eGT(:)
double precision,allocatable :: eOld(:)
double precision,allocatable :: P(:,:)
double precision,allocatable :: F(:,:)
double precision,allocatable :: Fp(:,:)
double precision,allocatable :: J(:,:)
double precision,allocatable :: K(:,:)
double precision,allocatable :: Sig(:,:)
double precision,allocatable :: Sigp(:,:)
double precision,allocatable :: Z(:)
double precision,allocatable :: err(:,:)
! Hello world
write(*,*)
write(*,*)'*********************************'
write(*,*)'* Restricted qsGTeh Calculation *'
write(*,*)'*********************************'
write(*,*)
! Warning
write(*,*) '!! ERIs in MO basis will be overwritten in qsGTeh !!'
write(*,*)
! Stuff
nBas_Sq = nBas*nBas
! TDA for T
if(TDA_T) then
write(*,*) 'Tamm-Dancoff approximation for eh T-matrix!'
write(*,*)
end if
! TDA
if(TDA) then
write(*,*) 'Tamm-Dancoff approximation activated!'
write(*,*)
end if
! Memory allocation
allocate(Aph(nS,nS), Bph(nS,nS), Om(nS), XpY(nS,nS), XmY(nS,nS))
allocate(eGT(nOrb))
allocate(eOld(nOrb))
allocate(Z(nOrb))
allocate(c(nBas,nOrb))
allocate(cp(nOrb,nOrb))
allocate(Fp(nOrb,nOrb))
allocate(Sig(nOrb,nOrb))
allocate(P(nBas,nBas))
allocate(F(nBas,nBas))
allocate(J(nBas,nBas))
allocate(K(nBas,nBas))
allocate(Sigp(nBas,nBas))
allocate(err(nBas,nBas))
allocate(err_diis(nBas_Sq,max_diis), F_diis(nBas_Sq,max_diis))
allocate(rhoL(nOrb,nOrb,nS), rhoR(nOrb,nOrb,nS))
! Initialization
nSCF = -1
n_diis = 0
ispin = 2
Conv = 1d0
P(:,:) = PHF(:,:)
eGT(:) = eHF(:)
eOld(:) = eHF(:)
c(:,:) = cHF(:,:)
F_diis(:,:) = 0d0
err_diis(:,:) = 0d0
rcond = 0d0
!------------------------------------------------------------------------
! Main loop
!------------------------------------------------------------------------
do while(Conv > thresh .and. nSCF <= maxSCF)
! Increment
nSCF = nSCF + 1
! Buid Hartree matrix
call Hartree_matrix_AO_basis(nBas,P,ERI_AO,J)
! Compute exchange part of the self-energy
call exchange_matrix_AO_basis(nBas,P,ERI_AO,K)
! AO to MO transformation of two-electron integrals
call AOtoMO_ERI_RHF(nBas, nOrb, c, ERI_AO, ERI_MO)
! Compute linear response
call phLR_A(ispin,dRPA,nOrb,nC,nO,nV,nR,nS,1d0,eGT,ERI_MO,Aph)
if(.not.TDA_T) call phLR_B(ispin,dRPA,nOrb,nC,nO,nV,nR,nS,1d0,ERI_MO,Bph)
call phLR(TDA_T,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
if(print_T) call print_excitation_energies('phRPA@RHF','triplet',nS,Om)
! Compute correlation part of the self-energy
call GTeh_excitation_density(nOrb,nC,nO,nR,nS,ERI_MO,XpY,XmY,rhoL,rhoR)
if(regularize) call GTeh_regularization(nOrb,nC,nO,nV,nR,nS,eGT,Om,rhoL,rhoR)
call GTeh_self_energy(eta,nOrb,nC,nO,nV,nR,nS,eGT,Om,rhoL,rhoR,EcGM,Sig,Z)
! Make correlation self-energy Hermitian and transform it back to AO basis
Sig = 0.5d0*(Sig + transpose(Sig))
call MOtoAO(nBas, nOrb, S, c, Sig, Sigp)
! Solve the quasi-particle equation
F(:,:) = Hc(:,:) + J(:,:) + 0.5d0*K(:,:) + Sigp(:,:)
if(nBas .ne. nOrb) then
call AOtoMO(nBas, nOrb, c(1,1), F(1,1), Fp(1,1))
call MOtoAO(nBas, nOrb, S(1,1), c(1,1), Fp(1,1), F(1,1))
endif
! Compute commutator and convergence criteria
err = matmul(F,matmul(P,S)) - matmul(matmul(S,P),F)
! DIIS extrapolation
if(max_diis > 1) then
n_diis = min(n_diis+1,max_diis)
call DIIS_extrapolation(rcond,nBas_Sq,nBas_Sq,n_diis,err_diis,F_diis,err,F)
end if
! Diagonalize Hamiltonian in AO basis
if(nBas .eq. nOrb) then
Fp = matmul(transpose(X), matmul(F, X))
cp(:,:) = Fp(:,:)
call diagonalize_matrix(nOrb, cp, eGT)
c = matmul(X, cp)
else
Fp = matmul(transpose(c), matmul(F, c))
cp(:,:) = Fp(:,:)
call diagonalize_matrix(nOrb, cp, eGT)
c = matmul(c, cp)
endif
! Compute new density matrix in the AO basis
P(:,:) = 2d0*matmul(c(:,1:nO),transpose(c(:,1:nO)))
! Save quasiparticles energy for next cycle
Conv = maxval(abs(err))
eOld(:) = eGT(:)
!------------------------------------------------------------------------
! Compute total energy
!------------------------------------------------------------------------
! Kinetic energy
ET = trace_matrix(nBas,matmul(P,T))
! Potential energy
EV = trace_matrix(nBas,matmul(P,V))
! Hartree energy
EJ = 0.5d0*trace_matrix(nBas,matmul(P,J))
! Exchange energy
Ex = 0.25d0*trace_matrix(nBas,matmul(P,K))
! Total energy
EqsGT = ET + EV + EJ + Ex
! Print results
call dipole_moment(nBas,P,nNuc,ZNuc,rNuc,dipole_int_AO,dipole)
call print_qsRGTeh(nBas, nOrb, nO, nSCF, Conv, thresh, eHF, eGT, c, Sig, &
Z, ENuc, ET, EV, EJ, Ex, EcGM, EcRPA, EqsGT, dipole)
end do
!------------------------------------------------------------------------
! End main loop
!------------------------------------------------------------------------
! Did it actually converge?
if(nSCF == maxSCF+1) then
write(*,*)
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)' Convergence failed '
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)
deallocate(c, cp, P, F, Fp, J, K, Sig, Sigp, Z, Om, XpY, XmY, rhoL, rhoR, err, err_diis, F_diis)
stop
end if
! Deallocate memory
deallocate(c, cp, P, F, Fp, J, K, Sig, Sigp, Z, Om, XpY, XmY, rhoL, rhoR, err, err_diis, F_diis)
! Perform BSE calculation
! if(BSE) then
! call Bethe_Salpeter(BSE2,TDA_T,TDA,dBSE,dTDA,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI_MO,dipole_int_MO, &
! eGT,eGT,EcBSE)
! if(exchange_kernel) then
! EcBSE(1) = 0.5d0*EcBSE(1)
! EcBSE(2) = 1.5d0*EcBSE(2)
! end if
! write(*,*)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsGW correlation energy (singlet) =',EcBSE(1)
! write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsGW correlation energy (triplet) =',EcBSE(2)
! write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsGW correlation energy =',EcBSE(1) + EcBSE(2)
! write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsGW total energy =',ENuc + EqsGW + EcBSE(1) + EcBSE(2)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*)
! Compute the BSE correlation energy via the adiabatic connection
! if(doACFDT) then
! write(*,*) '------------------------------------------------------'
! write(*,*) 'Adiabatic connection version of BSE correlation energy'
! write(*,*) '------------------------------------------------------'
! write(*,*)
! if(doXBS) then
! write(*,*) '*** scaled screening version (XBS) ***'
! write(*,*)
! end if
! call ACFDT(exchange_kernel,doXBS,.true.,TDA_T,TDA,BSE,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI_MO,eGW,eGW,EcAC)
! write(*,*)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW correlation energy (singlet) =',EcAC(1)
! write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW correlation energy (triplet) =',EcAC(2)
! write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW correlation energy =',EcAC(1) + EcAC(2)
! write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW total energy =',ENuc + EqsGW + EcAC(1) + EcAC(2)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*)
! end if
! end if
! Testing zone
if(dotest) then
call dump_test_value('R','qsGTeh correlation energy',EcRPA)
call dump_test_value('R','qsGTeh HOMO energy',eGT(nO))
call dump_test_value('R','qsGTeh LUMO energy',eGT(nO+1))
end if
end subroutine