mirror of
https://github.com/pfloos/quack
synced 2024-12-22 20:34:46 +01:00
131 lines
3.9 KiB
Fortran
131 lines
3.9 KiB
Fortran
subroutine RGW_ppBSE_dynamic_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,eGW,Om,rho,OmBSE,KC_dyn,ZC_dyn)
|
|
|
|
! Compute the dynamic part of the Bethe-Salpeter equation matrices
|
|
|
|
implicit none
|
|
include 'parameters.h'
|
|
|
|
! Input variables
|
|
|
|
integer,intent(in) :: ispin
|
|
integer,intent(in) :: nBas
|
|
integer,intent(in) :: nC
|
|
integer,intent(in) :: nO
|
|
integer,intent(in) :: nV
|
|
integer,intent(in) :: nR
|
|
integer,intent(in) :: nS
|
|
integer,intent(in) :: nVV
|
|
double precision,intent(in) :: eta
|
|
double precision,intent(in) :: lambda
|
|
double precision,intent(in) :: eGW(nBas)
|
|
double precision,intent(in) :: Om(nS)
|
|
double precision,intent(in) :: rho(nBas,nBas,nS)
|
|
double precision,intent(in) :: OmBSE
|
|
|
|
! Local variables
|
|
|
|
double precision,external :: Kronecker_delta
|
|
double precision :: dem,num
|
|
integer :: m
|
|
integer :: a,b,c,d
|
|
integer :: ab,cd
|
|
|
|
! Output variables
|
|
|
|
double precision,intent(out) :: KC_dyn(nVV,nVV)
|
|
double precision,intent(out) :: ZC_dyn(nVV,nVV)
|
|
|
|
! Initialization
|
|
|
|
KC_dyn(:,:) = 0d0
|
|
ZC_dyn(:,:) = 0d0
|
|
|
|
! Build dynamic A matrix
|
|
|
|
if(ispin == 1) then
|
|
|
|
ab = 0
|
|
do a=nO+1,nBas-nR
|
|
do b=a,nBas-nR
|
|
ab = ab + 1
|
|
|
|
cd = 0
|
|
do c=nO+1,nBas-nR
|
|
do d=c,nBas-nR
|
|
cd = cd + 1
|
|
|
|
do m=1,nS
|
|
num = (rho(a,c,m)*rho(b,d,m) + rho(b,c,m)*rho(a,d,m))/2
|
|
|
|
dem = OmBSE - Om(m) - eGW(b) - eGW(d)
|
|
KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2)
|
|
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
dem = OmBSE - Om(m) - eGW(a) - eGW(c)
|
|
KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2)
|
|
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
dem = OmBSE - Om(m) - eGW(a) - eGW(d)
|
|
KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2)
|
|
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
dem = OmBSE - Om(m) - eGW(b) - eGW(c)
|
|
KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2)
|
|
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
end do
|
|
|
|
KC_dyn(ab,cd) = KC_dyn(ab,cd)/sqrt((1d0 + Kronecker_delta(a,b))*(1d0 + Kronecker_delta(c,d)))
|
|
ZC_dyn(ab,cd) = ZC_dyn(ab,cd)/sqrt((1d0 + Kronecker_delta(a,b))*(1d0 + Kronecker_delta(c,d)))
|
|
|
|
end do
|
|
end do
|
|
|
|
end do
|
|
end do
|
|
|
|
end if
|
|
|
|
if(ispin == 2) then
|
|
|
|
ab = 0
|
|
do a=nO+1,nBas-nR
|
|
do b=a+1,nBas-nR
|
|
ab = ab + 1
|
|
|
|
cd = 0
|
|
do c=nO+1,nBas-nR
|
|
do d=c+1,nBas-nR
|
|
cd = cd + 1
|
|
|
|
do m=1,nS
|
|
num = (rho(a,c,m)*rho(b,d,m) - rho(b,c,m)*rho(a,d,m))/2
|
|
|
|
dem = OmBSE - Om(m) - eGW(b) - eGW(d)
|
|
KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2)
|
|
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
dem = OmBSE - Om(m) - eGW(a) - eGW(c)
|
|
KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2)
|
|
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
dem = OmBSE - Om(m) - eGW(a) - eGW(d)
|
|
KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2)
|
|
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
dem = OmBSE - Om(m) - eGW(b) - eGW(c)
|
|
KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2)
|
|
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
end do
|
|
|
|
end do
|
|
end do
|
|
|
|
end do
|
|
end do
|
|
|
|
end if
|
|
|
|
end subroutine
|