mirror of
https://github.com/pfloos/quack
synced 2025-05-07 07:35:02 +02:00
108 lines
3.5 KiB
Fortran
108 lines
3.5 KiB
Fortran
subroutine cRGW_QP_graph(doSRG,eta,flow,nBas,nC,nO,nV,nR,nS,eHF,e_cap,Om,rho,Re_eGWlin,Im_eGWlin, &
|
|
Re_eOld,Im_eOld,Re_eGW,Im_eGW,Re_Z,Im_Z)
|
|
|
|
! Compute the graphical solution of the QP equation
|
|
|
|
implicit none
|
|
include 'parameters.h'
|
|
|
|
! Input variables
|
|
|
|
integer,intent(in) :: nBas
|
|
integer,intent(in) :: nC
|
|
integer,intent(in) :: nO
|
|
integer,intent(in) :: nV
|
|
integer,intent(in) :: nR
|
|
integer,intent(in) :: nS
|
|
|
|
logical,intent(in) :: doSRG
|
|
double precision,intent(in) :: eta
|
|
double precision,intent(in) :: flow
|
|
double precision,intent(in) :: eHF(nBas)
|
|
double precision,intent(in) :: e_cap(nBas)
|
|
double precision,intent(in) :: Om(nS)
|
|
double precision,intent(in) :: rho(nBas,nBas,nS)
|
|
|
|
double precision,intent(in) :: Re_eGWlin(nBas)
|
|
double precision,intent(in) :: Im_eGWlin(nBas)
|
|
double precision,external :: cRGW_Re_SigC,cRGW_Re_dSigC
|
|
double precision,external :: cRGW_Im_SigC,cRGW_Im_dSigC
|
|
double precision,intent(in) :: Re_eOld(nBas)
|
|
double precision,intent(in) :: Im_eOld(nBas)
|
|
|
|
! Local variables
|
|
|
|
integer :: p
|
|
integer :: nIt
|
|
integer,parameter :: maxIt = 64
|
|
double precision,parameter :: thresh = 1d-6
|
|
double precision :: Re_SigC,Re_dSigC
|
|
double precision :: Im_SigC,Im_dSigC
|
|
double precision :: Re_f,Im_f,Re_df,Im_df
|
|
double precision :: Re_w
|
|
double precision :: Im_w
|
|
|
|
! Output variables
|
|
|
|
double precision,intent(out) :: Re_eGW(nBas),Im_eGW(nBas)
|
|
double precision,intent(out) :: Re_Z(nBas),Im_Z(nBas)
|
|
|
|
! Run Newton's algorithm to find the root
|
|
|
|
write(*,*)'-----------------------------------------------------'
|
|
write(*,'(A5,1X,A3,1X,A16,1X,A16,1X,A10)') 'Orb.','It.','Re(e_GWlin) (eV)','Re(e_GW (eV))','Re(Z)'
|
|
write(*,'(A5,1X,A3,1X,A16,1X,A16,1X,A10)') 'Orb.','It.','Im(e_GWlin) (eV)','Im(e_GW (eV))','Im(Z)'
|
|
write(*,*)'-----------------------------------------------------'
|
|
|
|
do p=nC+1,nBas-nR
|
|
|
|
Re_w = Re_eGWlin(p)
|
|
Im_w = Im_eGWlin(p)
|
|
nIt = 0
|
|
Re_f = 1d0
|
|
Im_f = 1d0
|
|
|
|
do while (sqrt(Re_f**2+Im_f**2) > thresh .and. nIt < maxIt)
|
|
|
|
nIt = nIt + 1
|
|
|
|
|
|
Re_SigC = cRGW_Re_SigC(p,Re_w,Im_w,eta,nBas,nC,nO,nV,nR,nS,Re_eOld,Im_eold,Om,rho)
|
|
Im_SigC = cRGW_Im_SigC(p,Re_w,Im_w,eta,nBas,nC,nO,nV,nR,nS,Re_eOld,Im_eold,Om,rho)
|
|
Re_dSigC = cRGW_Re_dSigC(p,Re_w,Im_w,eta,nBas,nC,nO,nV,nR,nS,Re_eOld,Im_eold,Om,rho)
|
|
Im_dSigC = cRGW_Im_dSigC(p,Re_w,Im_w,eta,nBas,nC,nO,nV,nR,nS,Re_eOld,Im_eold,Om,rho)
|
|
|
|
|
|
Re_f = Re_w - eHF(p) - Re_SigC
|
|
Im_f = Im_w - e_cap(p) - Im_SigC
|
|
Re_df = (1d0 - Re_dSigC)/((1d0 - Re_dSigC)**2 + Im_dSigC**2)
|
|
Im_df = Im_dSigC/((1d0 - Re_dSigC)**2 + Im_dSigC**2)
|
|
Re_w = Re_w - Re_df*Re_f + Im_df*Im_f
|
|
Im_w = Im_w - Re_f*Im_df - Re_df*Im_f
|
|
|
|
end do
|
|
|
|
if(nIt == maxIt) then
|
|
|
|
Re_eGW(p) = Re_eGWlin(p)
|
|
write(*,'(I5,1X,I3,1X,F15.9,1X,F15.9,1X,F10.6,1X,A12)') p,nIt,Re_eGWlin(p)*HaToeV,Re_eGW(p)*HaToeV,Re_Z(p),'Cvg Failed!'
|
|
|
|
else
|
|
|
|
Re_eGW(p) = Re_w
|
|
Im_eGW(p) = Im_w
|
|
Re_Z(p) = Re_df
|
|
Im_Z(p) = Im_df
|
|
|
|
write(*,'(I5,1X,I3,1X,F15.9,1X,F15.9,1X,F10.6)') p,nIt,Re_eGWlin(p)*HaToeV,Re_eGW(p)*HaToeV,Re_Z(p)
|
|
write(*,'(I5,1X,I3,1X,F15.9,1X,F15.9,1X,F10.6)') p,nIt,Im_eGWlin(p)*HaToeV,Im_eGW(p)*HaToeV,Im_Z(p)
|
|
|
|
end if
|
|
|
|
end do
|
|
|
|
write(*,*)'-----------------------------------------------------'
|
|
write(*,*)
|
|
|
|
end subroutine
|