10
1
mirror of https://github.com/pfloos/quack synced 2025-01-09 12:44:04 +01:00
QuAcK/src/GW/print_qsUGW.f90
2023-11-27 23:25:10 +01:00

176 lines
8.7 KiB
Fortran

subroutine print_qsUGW(nBas,nO,nSCF,Conv,thresh,eHF,eGW,c,Ov,ENuc,ET,EV,EJ,Ex,EcGM,EcRPA,EqsGW,SigC,Z,dipole)
! Print one-electron energies and other stuff for qsUGW
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nO(nspin)
integer,intent(in) :: nSCF
double precision,intent(in) :: ENuc
double precision,intent(in) :: ET(nspin)
double precision,intent(in) :: EV(nspin)
double precision,intent(in) :: EJ(nsp)
double precision,intent(in) :: Ex(nspin)
double precision,intent(in) :: EcGM(nspin)
double precision,intent(in) :: EcRPA
double precision,intent(in) :: EqsGW
double precision,intent(in) :: Conv
double precision,intent(in) :: thresh
double precision,intent(in) :: eHF(nBas,nspin)
double precision,intent(in) :: eGW(nBas,nspin)
double precision,intent(in) :: c(nBas,nBas,nspin)
double precision,intent(in) :: Ov(nBas,nBas)
double precision,intent(in) :: SigC(nBas,nBas,nspin)
double precision,intent(in) :: Z(nBas,nspin)
double precision,intent(in) :: dipole(ncart)
! Local variables
logical :: dump_orb = .false.
integer :: p
integer :: ispin,ixyz
double precision :: HOMO(nspin)
double precision :: LUMO(nspin)
double precision :: Gap(nspin)
double precision :: Sz
double precision :: Sx2,Sy2,Sz2
double precision,external :: trace_matrix
! HOMO and LUMO
do ispin=1,nspin
if(nO(ispin) > 0) then
HOMO(ispin) = eGW(nO(ispin),ispin)
LUMO(ispin) = eGW(nO(ispin)+1,ispin)
Gap(ispin) = LUMO(ispin) - HOMO(ispin)
else
HOMO(ispin) = 0d0
LUMO(ispin) = eGW(1,ispin)
Gap(ispin) = 0d0
end if
end do
Sz = 0.5d0*dble(nO(1) - nO(2))
Sx2 = 0.25d0*dble(nO(1) - nO(2)) + 0.5d0*nO(2) - 0.5d0*sum(matmul(transpose(c(:,1:nO(1),1)),matmul(Ov,c(:,1:nO(2),2)))**2)
Sy2 = 0.25d0*dble(nO(1) - nO(2)) + 0.5d0*nO(2) - 0.5d0*sum(matmul(transpose(c(:,1:nO(1),1)),matmul(Ov,c(:,1:nO(2),2)))**2)
Sz2 = 0.25d0*dble(nO(1) - nO(2))**2
! Dump results
write(*,*)'----------------------------------------------------------------'// &
'----------------------------------------------------------------'
if(nSCF < 10) then
write(*,'(1X,A20,I1,A1,I1,A16)')' Self-consistent qsG',nSCF,'W',nSCF,'@UHF calculation'
elseif(nSCF < 100) then
write(*,'(1X,A20,I2,A1,I2,A16)')' Self-consistent qsG',nSCF,'W',nSCF,'@UHF calculation'
else
write(*,'(1X,A20,I3,A1,I3,A16)')' Self-consistent qsG',nSCF,'W',nSCF,'@UHF calculation'
end if
write(*,*)'----------------------------------------------------------------'// &
'----------------------------------------------------------------'
write(*,'(A1,A3,A1,A30,A1,A30,A1,A30,A1,A30,A1)') &
'|',' ','|','e_HF (eV) ','|','Sig_GW (eV) ','|','Z ','|','e_GW (eV) ','|'
write(*,'(A1,A3,A1,2A15,A1,2A15,A1,2A15,A1,2A15,A1)') &
'|','#','|','up ','dw ','|','up ','dw ','|','up ','dw ','|','up ','dw ','|'
write(*,*)'----------------------------------------------------------------'// &
'----------------------------------------------------------------'
do p=1,nBas
write(*,'(A1,I3,A1,2F15.6,A1,2F15.6,A1,2F15.6,A1,2F15.6,A1)') &
'|',p,'|',eHF(p,1)*HaToeV,eHF(p,2)*HaToeV,'|',SigC(p,p,1)*HaToeV,SigC(p,p,2)*HaToeV,'|', &
Z(p,1),Z(p,2),'|',eGW(p,1)*HaToeV,eGW(p,2)*HaToeV,'|'
enddo
write(*,*)'----------------------------------------------------------------'// &
'----------------------------------------------------------------'
write(*,'(2X,A10,I3)') 'Iteration ',nSCF
write(*,'(2X,A14,F15.5)')'Convergence = ',Conv
write(*,*)'----------------------------------------------------------------'// &
'----------------------------------------------------------------'
write(*,'(2X,A60,F15.6,A3)') 'qsGW@UHF HOMO energy = ',maxval(HOMO)*HaToeV,' eV'
write(*,'(2X,A60,F15.6,A3)') 'qsGW@UHF LUMO energy = ',minval(LUMO)*HaToeV,' eV'
write(*,'(2X,A60,F15.6,A3)') 'qsGW@UHF HOMO-LUMO gap = ',(minval(LUMO)-maxval(HOMO))*HaToeV,' eV'
write(*,*)'----------------------------------------------------------------'// &
'----------------------------------------------------------------'
write(*,'(2X,A60,F15.6,A3)') ' qsGW@UHF total energy = ',ENuc + EqsGW,' au'
write(*,'(2X,A60,F15.6,A3)') ' qsGW@UHF exchange energy = ',sum(Ex),' au'
write(*,'(2X,A60,F15.6,A3)') ' GM@qsGW@UHF correlation energy = ',sum(EcGM),' au'
write(*,'(2X,A60,F15.6,A3)') 'RPA@qsGW@UHF correlation energy = ',EcRPA,' au'
write(*,*)'----------------------------------------------------------------'// &
'----------------------------------------------------------------'
write(*,*)
! Dump results for final iteration
if(Conv < thresh) then
write(*,*)
write(*,'(A60)') '-------------------------------------------------'
write(*,'(A40)') ' Summary '
write(*,'(A60)') '-------------------------------------------------'
write(*,'(A40,1X,F16.10,A3)') ' One-electron energy = ',sum(ET) + sum(EV),' au'
write(*,'(A40,1X,F16.10,A3)') ' One-electron a energy = ',ET(1) + EV(1),' au'
write(*,'(A40,1X,F16.10,A3)') ' One-electron b energy = ',ET(2) + EV(2),' au'
write(*,*)
write(*,'(A40,1X,F16.10,A3)') ' Kinetic energy = ',sum(ET),' au'
write(*,'(A40,1X,F16.10,A3)') ' Kinetic a energy = ',ET(1),' au'
write(*,'(A40,1X,F16.10,A3)') ' Kinetic b energy = ',ET(2),' au'
write(*,*)
write(*,'(A40,1X,F16.10,A3)') ' Potential energy = ',sum(EV),' au'
write(*,'(A40,1X,F16.10,A3)') ' Potential a energy = ',EV(1),' au'
write(*,'(A40,1X,F16.10,A3)') ' Potential b energy = ',EV(2),' au'
write(*,'(A60)') '-------------------------------------------------'
write(*,'(A40,1X,F16.10,A3)') ' Two-electron energy = ',sum(EJ) + sum(Ex),' au'
write(*,'(A40,1X,F16.10,A3)') ' Two-electron aa energy = ',EJ(1) + Ex(1),' au'
write(*,'(A40,1X,F16.10,A3)') ' Two-electron ab energy = ',EJ(2),' au'
write(*,'(A40,1X,F16.10,A3)') ' Two-electron bb energy = ',EJ(3) + Ex(2),' au'
write(*,*)
write(*,'(A40,1X,F16.10,A3)') ' Hartree energy = ',sum(EJ),' au'
write(*,'(A40,1X,F16.10,A3)') ' Hartree aa energy = ',EJ(1),' au'
write(*,'(A40,1X,F16.10,A3)') ' Hartree ab energy = ',EJ(2),' au'
write(*,'(A40,1X,F16.10,A3)') ' Hartree bb energy = ',EJ(3),' au'
write(*,*)
write(*,'(A40,1X,F16.10,A3)') ' Exchange energy = ',sum(Ex),' au'
write(*,'(A40,1X,F16.10,A3)') ' Exchange a energy = ',Ex(1),' au'
write(*,'(A40,1X,F16.10,A3)') ' Exchange b energy = ',Ex(2),' au'
write(*,*)
write(*,'(A40,1X,F16.10,A3)') ' Correlation energy = ',sum(EcGM),' au'
write(*,'(A40,1X,F16.10,A3)') ' Correlation aa energy = ',EcGM(1),' au'
write(*,'(A40,1X,F16.10,A3)') ' Correlation bb energy = ',EcGM(2),' au'
write(*,'(A60)') '-------------------------------------------------'
write(*,'(A40,1X,F16.10,A3)') ' Electronic energy = ',EqsGW,' au'
write(*,'(A40,1X,F16.10,A3)') ' Nuclear repulsion = ',ENuc,' au'
write(*,'(A40,1X,F16.10,A3)') ' qsUGW energy = ',ENuc + EqsGW,' au'
write(*,'(A60)') '-------------------------------------------------'
write(*,'(A40,1X,F10.6)') ' <Sz> = ',Sz
write(*,'(A40,1X,F10.6)') ' <S^2> = ',Sx2+Sy2+Sz2
write(*,'(A60)') '-------------------------------------------------'
write(*,'(A45)') ' Dipole moment (Debye) '
write(*,'(19X,4A10)') 'X','Y','Z','Tot.'
write(*,'(19X,4F10.4)') (dipole(ixyz)*auToD,ixyz=1,ncart),norm2(dipole)*auToD
write(*,'(A60)') '-------------------------------------------------'
write(*,*)
! Print orbitals
if(dump_orb) then
write(*,'(A50)') '-----------------------------------------'
write(*,'(A50)') 'qsUGW spin-up orbital coefficients '
write(*,'(A50)') '-----------------------------------------'
call matout(nBas,nBas,c(:,:,1))
write(*,*)
write(*,'(A50)') '-----------------------------------------'
write(*,'(A50)') 'qsUGW spin-down orbital coefficients '
write(*,'(A50)') '-----------------------------------------'
call matout(nBas,nBas,c(:,:,2))
write(*,*)
end if
end if
end subroutine