10
1
mirror of https://github.com/pfloos/quack synced 2025-01-10 13:08:19 +01:00
QuAcK/src/GF/UGF2_self_energy_diag.f90

191 lines
4.6 KiB
Fortran

subroutine UGF2_self_energy_diag(nBas,nC,nO,nV,nR,eta,ERI_aa,ERI_ab,ERI_bb,eHF,eGF2,SigC,Z)
! Perform unrestricted GF2 self-energy and its renormalization factor
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nC(nspin)
integer,intent(in) :: nO(nspin)
integer,intent(in) :: nV(nspin)
integer,intent(in) :: nR(nspin)
double precision,intent(in) :: eta
double precision,intent(in) :: ERI_aa(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI_ab(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI_bb(nBas,nBas,nBas,nBas)
double precision,intent(in) :: eHF(nBas,nspin)
double precision,intent(in) :: eGF2(nBas,nspin)
! Local variables
integer :: p
integer :: i,j,a,b
double precision :: eps,num
! Output variables
double precision,intent(out) :: SigC(nBas,nspin)
double precision,intent(out) :: Z(nBas,nspin)
!---------------------!
! Compute self-energy |
!---------------------!
SigC(:,:) = 0d0
!----------------!
! Spin-up sector
!----------------!
do p=nC(1)+1,nBas-nR(1)
! Addition part: aa
do i=nC(1)+1,nO(1)
do a=nO(1)+1,nBas-nR(1)
do b=nO(1)+1,nBas-nR(1)
eps = eGF2(p,1) + eHF(i,1) - eHF(a,1) - eHF(b,1)
num = ERI_aa(i,p,a,b)*ERI_aa(a,b,i,p) &
- ERI_aa(i,p,a,b)*ERI_aa(a,b,p,i)
SigC(p,1) = SigC(p,1) + num*eps/(eps**2 + eta**2)
Z(p,1) = Z(p,1) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
enddo
enddo
enddo
! Addition part: ab
do i=nC(2)+1,nO(2)
do a=nO(2)+1,nBas-nR(2)
do b=nO(1)+1,nBas-nR(1)
eps = eGF2(p,1) + eHF(i,2) - eHF(a,2) - eHF(b,1)
num = ERI_ab(p,i,b,a)*ERI_ab(b,a,p,i)
SigC(p,1) = SigC(p,1) + num*eps/(eps**2 + eta**2)
Z(p,1) = Z(p,1) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
enddo
enddo
enddo
! Removal part: aa
do i=nC(1)+1,nO(1)
do a=nO(1)+1,nBas-nR(1)
do j=nC(1)+1,nO(1)
eps = eGF2(p,1) + eHF(a,1) - eHF(i,1) - eHF(j,1)
num = ERI_aa(a,p,i,j)*ERI_aa(i,j,a,p) &
- ERI_aa(a,p,i,j)*ERI_aa(i,j,p,a)
SigC(p,1) = SigC(p,1) + num*eps/(eps**2 + eta**2)
Z(p,1) = Z(p,1) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
enddo
enddo
enddo
! Removal part: ab
do i=nC(2)+1,nO(2)
do a=nO(2)+1,nBas-nR(2)
do j=nC(1)+1,nO(1)
eps = eGF2(p,1) + eHF(a,2) - eHF(i,2) - eHF(j,1)
num = ERI_ab(p,a,j,i)*ERI_ab(j,i,p,a)
SigC(p,1) = SigC(p,1) + num*eps/(eps**2 + eta**2)
Z(p,1) = Z(p,1) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
enddo
enddo
enddo
enddo
!------------------!
! Spin-down sector !
!------------------!
do p=nC(2)+1,nBas-nR(2)
! Addition part: bb
do i=nC(2)+1,nO(2)
do a=nO(2)+1,nBas-nR(2)
do b=nO(2)+1,nBas-nR(2)
eps = eGF2(p,2) + eHF(i,2) - eHF(a,2) - eHF(b,2)
num = ERI_bb(i,p,a,b)*ERI_bb(a,b,i,p) &
- ERI_bb(i,p,a,b)*ERI_bb(a,b,p,i)
SigC(p,2) = SigC(p,2) + num*eps/(eps**2 + eta**2)
Z(p,2) = Z(p,2) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
enddo
enddo
enddo
! Addition part: ab
do i=nC(1)+1,nO(1)
do a=nO(1)+1,nBas-nR(1)
do b=nO(2)+1,nBas-nR(2)
eps = eGF2(p,2) + eHF(i,1) - eHF(a,1) - eHF(b,2)
num = ERI_ab(i,p,a,b)*ERI_ab(a,b,i,p)
SigC(p,2) = SigC(p,2) + num*eps/(eps**2 + eta**2)
Z(p,2) = Z(p,2) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
enddo
enddo
enddo
! Removal part: bb
do i=nC(2)+1,nO(2)
do a=nO(2)+1,nBas-nR(2)
do j=nC(2)+1,nO(2)
eps = eGF2(p,2) + eHF(a,2) - eHF(i,2) - eHF(j,2)
num = ERI_bb(a,p,i,j)*ERI_bb(i,j,a,p) &
- ERI_bb(a,p,i,j)*ERI_bb(i,j,p,a)
SigC(p,2) = SigC(p,2) + num*eps/(eps**2 + eta**2)
Z(p,2) = Z(p,2) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
enddo
enddo
enddo
! Removal part: ab
do i=nC(1)+1,nO(1)
do a=nO(1)+1,nBas-nR(1)
do j=nC(2)+1,nO(2)
eps = eGF2(p,2) + eHF(a,1) - eHF(i,1) - eHF(j,2)
num = ERI_ab(a,p,i,j)*ERI_ab(i,j,a,p)
SigC(p,2) = SigC(p,2) + num*eps/(eps**2 + eta**2)
Z(p,2) = Z(p,2) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
enddo
enddo
enddo
enddo
Z(:,:) = 1d0/(1d0 - Z(:,:))
end subroutine