10
1
mirror of https://github.com/pfloos/quack synced 2025-01-10 21:18:23 +01:00
QuAcK/src/GW/ufGW.f90
2023-11-24 15:31:29 +01:00

414 lines
9.5 KiB
Fortran

subroutine ufGW(dotest,TDA_W,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF)
! Unfold GW equations
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: dotest
logical,intent(in) :: TDA_W
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: eHF(nBas)
! Local variables
integer :: p
integer :: s
integer :: i,j,k,l
integer :: a,b,c,d
integer :: ia,ja,kc,lc
integer :: klc,kcd,ija,iab
logical :: dRPA
integer :: ispin
double precision :: EcRPA
integer :: n2h1p,n2p1h,nH
double precision,external :: Kronecker_delta
double precision,allocatable :: H(:,:)
double precision,allocatable :: eGW(:)
double precision,allocatable :: Z(:)
double precision,allocatable :: Aph(:,:)
double precision,allocatable :: Bph(:,:)
double precision,allocatable :: Om(:)
double precision,allocatable :: XpY(:,:)
double precision,allocatable :: XmY(:,:)
double precision,allocatable :: rho(:,:,:)
logical :: verbose = .true.
double precision,parameter :: cutoff1 = 0.01d0
double precision,parameter :: cutoff2 = 0.01d0
! Output variables
! Hello world
write(*,*)
write(*,*)'**************************************'
write(*,*)'* Restricted Upfolded GW Calculation *'
write(*,*)'**************************************'
write(*,*)
! Dimension of the supermatrix
n2h1p = nO*nO*nV
n2p1h = nV*nV*nO
nH = nBas + n2h1p + n2p1h
! Memory allocation
allocate(H(nH,nH),eGW(nH),Z(nH))
! Initialization
H(:,:) = 0d0
if (TDA_W) then
! TDA for W
write(*,*) 'Tamm-Dancoff approximation actived!'
write(*,*)
!---------------------------!
! Compute GW supermatrix !
!---------------------------!
! !
! | F V2h1p V2p1h | !
! | | !
! H = | V2h1p C2h1p 0 | !
! | | !
! | V2p1h 0 C2p1h | !
! !
!---------------------------!
!---------!
! Block F !
!---------!
do p=nC+1,nBas-nR
H(p,p) = eHF(p)
end do
!-------------!
! Block V2h1p !
!-------------!
do p=nC+1,nBas-nR
klc = 0
do k=nC+1,nO
do l=nC+1,nO
do c=nO+1,nBas-nR
klc = klc + 1
H(p ,nBas+klc) = sqrt(2d0)*ERI(p,c,k,l)
H(nBas+klc,p ) = sqrt(2d0)*ERI(p,c,k,l)
end do
end do
end do
end do
!-------------!
! Block V2p1h !
!-------------!
do p=nC+1,nBas-nR
kcd = 0
do k=nC+1,nO
do c=nO+1,nBas-nR
do d=nO+1,nBas-nR
kcd = kcd + 1
H(p ,nBas+n2h1p+kcd) = sqrt(2d0)*ERI(p,k,d,c)
H(nBas+n2h1p+kcd,p ) = sqrt(2d0)*ERI(p,k,d,c)
end do
end do
end do
end do
!-------------!
! Block C2h1p !
!-------------!
ija = 0
do i=nC+1,nO
do j=nC+1,nO
do a=nO+1,nBas-nR
ija = ija + 1
klc = 0
do k=nC+1,nO
do l=nC+1,nO
do c=nO+1,nBas-nR
klc = klc + 1
H(nBas+ija,nBas+klc) &
= ((eHF(i) + eHF(j) - eHF(a))*Kronecker_delta(j,l)*Kronecker_delta(a,c) &
- 2d0*ERI(j,c,a,l))*Kronecker_delta(i,k)
end do
end do
end do
end do
end do
end do
!-------------!
! Block C2p1h !
!-------------!
iab = 0
do i=nC+1,nO
do a=nO+1,nBas-nR
do b=nO+1,nBas-nR
iab = iab + 1
kcd = 0
do k=nC+1,nO
do c=nO+1,nBas-nR
do d=nO+1,nBas-nR
kcd = kcd + 1
H(nBas+n2h1p+iab,nBas+n2h1p+kcd) &
= ((eHF(a) + eHF(b) - eHF(i))*Kronecker_delta(i,k)*Kronecker_delta(a,c) &
+ 2d0*ERI(a,k,i,c))*Kronecker_delta(b,d)
end do
end do
end do
end do
end do
end do
else
! RPA for W
write(*,*) 'Tamm-Dancoff approximation deactivated!'
write(*,*)
!---------------------------!
! Compute GW supermatrix !
!---------------------------!
! !
! | F W2h1p W2p1h | !
! | | !
! H = | W2h1p D2h1p 0 | !
! | | !
! | W2p1h 0 D2p1h | !
! !
!---------------------------!
! Memory allocation
allocate(Om(nS),Aph(nS,nS),Bph(nS,nS),XpY(nS,nS),XmY(nS,nS),rho(nBas,nBas,nS))
! Spin manifold
ispin = 1
!-------------------!
! Compute screening !
!-------------------!
call phLR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,eHF,ERI,Aph)
if(.not.TDA_W) call phLR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,ERI,Bph)
call phLR(TDA_W,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
!--------------------------!
! Compute spectral weights !
!--------------------------!
call GW_excitation_density(nBas,nC,nO,nR,nS,ERI,XpY,rho)
!---------!
! Block F !
!---------!
do p=nC+1,nBas-nR
H(p,p) = eHF(p)
end do
!-------------!
! Block W2h1p !
!-------------!
do p=nC+1,nBas-nR
klc = 0
do k=nC+1,nO
do lc=1,nS
klc = klc + 1
H(p ,nBas+klc) = sqrt(2d0)*rho(p,k,lc)
H(nBas+klc,p ) = sqrt(2d0)*rho(p,k,lc)
end do
end do
end do
!-------------!
! Block W2p1h !
!-------------!
do p=nC+1,nBas-nR
kcd = 0
do kc=1,nS
do d=nO+1,nBas-nR
kcd = kcd + 1
H(p ,nBas+n2h1p+kcd) = sqrt(2d0)*rho(p,d,kc)
H(nBas+n2h1p+kcd,p ) = sqrt(2d0)*rho(p,d,kc)
end do
end do
end do
!-------------!
! Block D2h1p !
!-------------!
ija = 0
do i=nC+1,nO
do ja=1,nS
ija = ija + 1
H(nBas+ija,nBas+ija) = eHF(i) - Om(ja)
end do
end do
!-------------!
! Block D2p1h !
!-------------!
iab = 0
do ia=1,nS
do b=nO+1,nBas-nR
iab = iab + 1
H(nBas+n2h1p+iab,nBas+n2h1p+iab) = eHF(b) + Om(ia)
end do
end do
end if
!-------------------------!
! Diagonalize supermatrix !
!-------------------------!
call diagonalize_matrix(nH,H,eGW)
!-----------------!
! Compute weights !
!-----------------!
Z(:) = 0d0
do s=1,nH
do p=nC+1,nBas-nR
Z(s) = Z(s) + H(p,s)**2
end do
end do
!--------------!
! Dump results !
!--------------!
write(*,*)'---------------------------------------------'
write(*,'(1X,A45)')'| GW energies (eV) for all orbitals |'
write(*,*)'---------------------------------------------'
write(*,'(1X,A1,1X,A5,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X)') &
'|','#','|','e_QP','|','Z','|'
write(*,*)'---------------------------------------------'
do s=1,nH
write(*,'(1X,A1,1X,I5,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X)') &
'|',s,'|',eGW(s)*HaToeV,'|',Z(s),'|'
enddo
write(*,*)'---------------------------------------------'
write(*,*)
if(verbose) then
do s=1,nH
if(Z(s) > cutoff1) then
write(*,*)'-------------------------------------------------------------'
write(*,'(1X,A10,I5,A1,1X,A7,F12.6,A13,F6.4,1X)') &
'Solution',s,':','e_QP = ',eGW(s)*HaToeV,' eV and Z = ',Z(s)
write(*,*)'-------------------------------------------------------------'
write(*,'(1X,A20,1X,A20,1X,A15,1X)') &
' Configuration ',' Coefficient ',' Weight '
write(*,*)'-------------------------------------------------------------'
if(p <= nO) &
write(*,'(1X,A7,I3,A16,1X,F15.6,1X,F15.6)') &
' (',p,') ',H(1,s),H(1,s)**2
if(p > nO) &
write(*,'(1X,A16,I3,A7,1X,F15.6,1X,F15.6)') &
' (',p,') ',H(1,s),H(1,s)**2
klc = 0
do k=nC+1,nO
do l=nC+1,nO
do c=nO+1,nBas-nR
klc = klc + 1
if(abs(H(1+klc,s)) > cutoff2) &
write(*,'(1X,A3,I3,A1,I3,A6,I3,A7,1X,F15.6,1X,F15.6)') &
' (',k,',',l,') -> (',c,') ',H(1+klc,s),H(1+klc,s)**2
end do
end do
end do
kcd = 0
do k=nC+1,nO
do c=nO+1,nBas-nR
do d=nO+1,nBas-nR
kcd = kcd + 1
if(abs(H(1+n2h1p+kcd,s)) > cutoff2) &
write(*,'(1X,A7,I3,A6,I3,A1,I3,A3,1X,F15.6,1X,F15.6)') &
' (',k,') -> (',c,',',d,') ',H(1+n2h1p+kcd,s),H(1+n2h1p+kcd,s)**2
end do
end do
end do
write(*,*)'-------------------------------------------------------------'
write(*,*)
end if
end do
end if
end subroutine