mirror of
https://github.com/pfloos/quack
synced 2025-01-10 21:18:23 +01:00
414 lines
9.5 KiB
Fortran
414 lines
9.5 KiB
Fortran
subroutine ufGW(dotest,TDA_W,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF)
|
|
|
|
! Unfold GW equations
|
|
|
|
implicit none
|
|
include 'parameters.h'
|
|
|
|
! Input variables
|
|
|
|
logical,intent(in) :: dotest
|
|
|
|
logical,intent(in) :: TDA_W
|
|
integer,intent(in) :: nBas
|
|
integer,intent(in) :: nC
|
|
integer,intent(in) :: nO
|
|
integer,intent(in) :: nV
|
|
integer,intent(in) :: nR
|
|
integer,intent(in) :: nS
|
|
double precision,intent(in) :: ENuc
|
|
double precision,intent(in) :: ERHF
|
|
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
|
|
double precision,intent(in) :: eHF(nBas)
|
|
|
|
! Local variables
|
|
|
|
integer :: p
|
|
integer :: s
|
|
integer :: i,j,k,l
|
|
integer :: a,b,c,d
|
|
integer :: ia,ja,kc,lc
|
|
integer :: klc,kcd,ija,iab
|
|
|
|
logical :: dRPA
|
|
integer :: ispin
|
|
double precision :: EcRPA
|
|
integer :: n2h1p,n2p1h,nH
|
|
double precision,external :: Kronecker_delta
|
|
double precision,allocatable :: H(:,:)
|
|
double precision,allocatable :: eGW(:)
|
|
double precision,allocatable :: Z(:)
|
|
double precision,allocatable :: Aph(:,:)
|
|
double precision,allocatable :: Bph(:,:)
|
|
double precision,allocatable :: Om(:)
|
|
double precision,allocatable :: XpY(:,:)
|
|
double precision,allocatable :: XmY(:,:)
|
|
double precision,allocatable :: rho(:,:,:)
|
|
|
|
logical :: verbose = .true.
|
|
double precision,parameter :: cutoff1 = 0.01d0
|
|
double precision,parameter :: cutoff2 = 0.01d0
|
|
|
|
! Output variables
|
|
|
|
! Hello world
|
|
|
|
write(*,*)
|
|
write(*,*)'**************************************'
|
|
write(*,*)'* Restricted Upfolded GW Calculation *'
|
|
write(*,*)'**************************************'
|
|
write(*,*)
|
|
|
|
! Dimension of the supermatrix
|
|
|
|
n2h1p = nO*nO*nV
|
|
n2p1h = nV*nV*nO
|
|
nH = nBas + n2h1p + n2p1h
|
|
|
|
! Memory allocation
|
|
|
|
allocate(H(nH,nH),eGW(nH),Z(nH))
|
|
|
|
! Initialization
|
|
|
|
H(:,:) = 0d0
|
|
|
|
if (TDA_W) then
|
|
|
|
! TDA for W
|
|
|
|
write(*,*) 'Tamm-Dancoff approximation actived!'
|
|
write(*,*)
|
|
|
|
!---------------------------!
|
|
! Compute GW supermatrix !
|
|
!---------------------------!
|
|
! !
|
|
! | F V2h1p V2p1h | !
|
|
! | | !
|
|
! H = | V2h1p C2h1p 0 | !
|
|
! | | !
|
|
! | V2p1h 0 C2p1h | !
|
|
! !
|
|
!---------------------------!
|
|
|
|
!---------!
|
|
! Block F !
|
|
!---------!
|
|
|
|
do p=nC+1,nBas-nR
|
|
H(p,p) = eHF(p)
|
|
end do
|
|
|
|
!-------------!
|
|
! Block V2h1p !
|
|
!-------------!
|
|
|
|
do p=nC+1,nBas-nR
|
|
|
|
klc = 0
|
|
do k=nC+1,nO
|
|
do l=nC+1,nO
|
|
do c=nO+1,nBas-nR
|
|
klc = klc + 1
|
|
|
|
H(p ,nBas+klc) = sqrt(2d0)*ERI(p,c,k,l)
|
|
H(nBas+klc,p ) = sqrt(2d0)*ERI(p,c,k,l)
|
|
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
end do
|
|
|
|
!-------------!
|
|
! Block V2p1h !
|
|
!-------------!
|
|
|
|
do p=nC+1,nBas-nR
|
|
|
|
kcd = 0
|
|
do k=nC+1,nO
|
|
do c=nO+1,nBas-nR
|
|
do d=nO+1,nBas-nR
|
|
kcd = kcd + 1
|
|
|
|
H(p ,nBas+n2h1p+kcd) = sqrt(2d0)*ERI(p,k,d,c)
|
|
H(nBas+n2h1p+kcd,p ) = sqrt(2d0)*ERI(p,k,d,c)
|
|
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
end do
|
|
|
|
!-------------!
|
|
! Block C2h1p !
|
|
!-------------!
|
|
|
|
ija = 0
|
|
do i=nC+1,nO
|
|
do j=nC+1,nO
|
|
do a=nO+1,nBas-nR
|
|
ija = ija + 1
|
|
|
|
klc = 0
|
|
do k=nC+1,nO
|
|
do l=nC+1,nO
|
|
do c=nO+1,nBas-nR
|
|
klc = klc + 1
|
|
|
|
H(nBas+ija,nBas+klc) &
|
|
= ((eHF(i) + eHF(j) - eHF(a))*Kronecker_delta(j,l)*Kronecker_delta(a,c) &
|
|
- 2d0*ERI(j,c,a,l))*Kronecker_delta(i,k)
|
|
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
!-------------!
|
|
! Block C2p1h !
|
|
!-------------!
|
|
|
|
iab = 0
|
|
do i=nC+1,nO
|
|
do a=nO+1,nBas-nR
|
|
do b=nO+1,nBas-nR
|
|
iab = iab + 1
|
|
|
|
kcd = 0
|
|
do k=nC+1,nO
|
|
do c=nO+1,nBas-nR
|
|
do d=nO+1,nBas-nR
|
|
kcd = kcd + 1
|
|
|
|
H(nBas+n2h1p+iab,nBas+n2h1p+kcd) &
|
|
= ((eHF(a) + eHF(b) - eHF(i))*Kronecker_delta(i,k)*Kronecker_delta(a,c) &
|
|
+ 2d0*ERI(a,k,i,c))*Kronecker_delta(b,d)
|
|
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
else
|
|
|
|
! RPA for W
|
|
|
|
write(*,*) 'Tamm-Dancoff approximation deactivated!'
|
|
write(*,*)
|
|
|
|
!---------------------------!
|
|
! Compute GW supermatrix !
|
|
!---------------------------!
|
|
! !
|
|
! | F W2h1p W2p1h | !
|
|
! | | !
|
|
! H = | W2h1p D2h1p 0 | !
|
|
! | | !
|
|
! | W2p1h 0 D2p1h | !
|
|
! !
|
|
!---------------------------!
|
|
|
|
! Memory allocation
|
|
|
|
allocate(Om(nS),Aph(nS,nS),Bph(nS,nS),XpY(nS,nS),XmY(nS,nS),rho(nBas,nBas,nS))
|
|
|
|
! Spin manifold
|
|
|
|
ispin = 1
|
|
|
|
!-------------------!
|
|
! Compute screening !
|
|
!-------------------!
|
|
|
|
call phLR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,eHF,ERI,Aph)
|
|
if(.not.TDA_W) call phLR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,ERI,Bph)
|
|
|
|
call phLR(TDA_W,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
|
|
|
|
!--------------------------!
|
|
! Compute spectral weights !
|
|
!--------------------------!
|
|
|
|
call GW_excitation_density(nBas,nC,nO,nR,nS,ERI,XpY,rho)
|
|
|
|
!---------!
|
|
! Block F !
|
|
!---------!
|
|
|
|
do p=nC+1,nBas-nR
|
|
H(p,p) = eHF(p)
|
|
end do
|
|
|
|
!-------------!
|
|
! Block W2h1p !
|
|
!-------------!
|
|
|
|
do p=nC+1,nBas-nR
|
|
|
|
klc = 0
|
|
do k=nC+1,nO
|
|
do lc=1,nS
|
|
klc = klc + 1
|
|
|
|
H(p ,nBas+klc) = sqrt(2d0)*rho(p,k,lc)
|
|
H(nBas+klc,p ) = sqrt(2d0)*rho(p,k,lc)
|
|
|
|
end do
|
|
end do
|
|
|
|
end do
|
|
|
|
!-------------!
|
|
! Block W2p1h !
|
|
!-------------!
|
|
|
|
do p=nC+1,nBas-nR
|
|
|
|
kcd = 0
|
|
do kc=1,nS
|
|
do d=nO+1,nBas-nR
|
|
kcd = kcd + 1
|
|
|
|
H(p ,nBas+n2h1p+kcd) = sqrt(2d0)*rho(p,d,kc)
|
|
H(nBas+n2h1p+kcd,p ) = sqrt(2d0)*rho(p,d,kc)
|
|
|
|
end do
|
|
end do
|
|
|
|
end do
|
|
|
|
!-------------!
|
|
! Block D2h1p !
|
|
!-------------!
|
|
|
|
ija = 0
|
|
do i=nC+1,nO
|
|
do ja=1,nS
|
|
ija = ija + 1
|
|
|
|
H(nBas+ija,nBas+ija) = eHF(i) - Om(ja)
|
|
|
|
end do
|
|
end do
|
|
|
|
!-------------!
|
|
! Block D2p1h !
|
|
!-------------!
|
|
|
|
iab = 0
|
|
do ia=1,nS
|
|
do b=nO+1,nBas-nR
|
|
iab = iab + 1
|
|
|
|
H(nBas+n2h1p+iab,nBas+n2h1p+iab) = eHF(b) + Om(ia)
|
|
|
|
end do
|
|
end do
|
|
|
|
end if
|
|
|
|
!-------------------------!
|
|
! Diagonalize supermatrix !
|
|
!-------------------------!
|
|
|
|
call diagonalize_matrix(nH,H,eGW)
|
|
|
|
!-----------------!
|
|
! Compute weights !
|
|
!-----------------!
|
|
|
|
Z(:) = 0d0
|
|
do s=1,nH
|
|
do p=nC+1,nBas-nR
|
|
Z(s) = Z(s) + H(p,s)**2
|
|
end do
|
|
end do
|
|
|
|
!--------------!
|
|
! Dump results !
|
|
!--------------!
|
|
|
|
write(*,*)'---------------------------------------------'
|
|
write(*,'(1X,A45)')'| GW energies (eV) for all orbitals |'
|
|
write(*,*)'---------------------------------------------'
|
|
write(*,'(1X,A1,1X,A5,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X)') &
|
|
'|','#','|','e_QP','|','Z','|'
|
|
write(*,*)'---------------------------------------------'
|
|
|
|
do s=1,nH
|
|
write(*,'(1X,A1,1X,I5,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X)') &
|
|
'|',s,'|',eGW(s)*HaToeV,'|',Z(s),'|'
|
|
enddo
|
|
|
|
write(*,*)'---------------------------------------------'
|
|
write(*,*)
|
|
|
|
if(verbose) then
|
|
|
|
do s=1,nH
|
|
|
|
if(Z(s) > cutoff1) then
|
|
|
|
write(*,*)'-------------------------------------------------------------'
|
|
write(*,'(1X,A10,I5,A1,1X,A7,F12.6,A13,F6.4,1X)') &
|
|
'Solution',s,':','e_QP = ',eGW(s)*HaToeV,' eV and Z = ',Z(s)
|
|
write(*,*)'-------------------------------------------------------------'
|
|
write(*,'(1X,A20,1X,A20,1X,A15,1X)') &
|
|
' Configuration ',' Coefficient ',' Weight '
|
|
write(*,*)'-------------------------------------------------------------'
|
|
|
|
if(p <= nO) &
|
|
write(*,'(1X,A7,I3,A16,1X,F15.6,1X,F15.6)') &
|
|
' (',p,') ',H(1,s),H(1,s)**2
|
|
if(p > nO) &
|
|
write(*,'(1X,A16,I3,A7,1X,F15.6,1X,F15.6)') &
|
|
' (',p,') ',H(1,s),H(1,s)**2
|
|
|
|
klc = 0
|
|
do k=nC+1,nO
|
|
do l=nC+1,nO
|
|
do c=nO+1,nBas-nR
|
|
|
|
klc = klc + 1
|
|
|
|
if(abs(H(1+klc,s)) > cutoff2) &
|
|
write(*,'(1X,A3,I3,A1,I3,A6,I3,A7,1X,F15.6,1X,F15.6)') &
|
|
' (',k,',',l,') -> (',c,') ',H(1+klc,s),H(1+klc,s)**2
|
|
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
kcd = 0
|
|
do k=nC+1,nO
|
|
do c=nO+1,nBas-nR
|
|
do d=nO+1,nBas-nR
|
|
|
|
kcd = kcd + 1
|
|
if(abs(H(1+n2h1p+kcd,s)) > cutoff2) &
|
|
write(*,'(1X,A7,I3,A6,I3,A1,I3,A3,1X,F15.6,1X,F15.6)') &
|
|
' (',k,') -> (',c,',',d,') ',H(1+n2h1p+kcd,s),H(1+n2h1p+kcd,s)**2
|
|
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
write(*,*)'-------------------------------------------------------------'
|
|
write(*,*)
|
|
|
|
end if
|
|
|
|
end do
|
|
|
|
end if
|
|
end subroutine
|