mirror of
https://github.com/pfloos/quack
synced 2025-04-23 16:54:54 +02:00
169 lines
5.1 KiB
Fortran
169 lines
5.1 KiB
Fortran
subroutine BSE2_A_matrix_dynamic(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,eGF,OmBSE,A_dyn,ZA_dyn)
|
|
|
|
! Compute the resonant part of the dynamic BSE2 matrix
|
|
|
|
implicit none
|
|
include 'parameters.h'
|
|
|
|
! Input variables
|
|
|
|
integer,intent(in) :: ispin
|
|
integer,intent(in) :: nBas,nC,nO,nV,nR,nS
|
|
double precision,intent(in) :: eta
|
|
double precision,intent(in) :: lambda
|
|
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
|
|
double precision,intent(in) :: eGF(nBas)
|
|
double precision,intent(in) :: OmBSE
|
|
|
|
! Local variables
|
|
|
|
double precision :: dem,num
|
|
integer :: i,j,k,l
|
|
integer :: a,b,c,d
|
|
integer :: ia,jb
|
|
|
|
! Output variables
|
|
|
|
double precision,intent(out) :: A_dyn(nS,nS)
|
|
double precision,intent(out) :: ZA_dyn(nS,nS)
|
|
|
|
! Initialization
|
|
|
|
A_dyn(:,:) = 0d0
|
|
ZA_dyn(:,:) = 0d0
|
|
|
|
! Second-order correlation kernel for the block A of the singlet manifold
|
|
|
|
if(ispin == 1) then
|
|
|
|
ia = 0
|
|
do i=nC+1,nO
|
|
do a=nO+1,nBas-nR
|
|
ia = ia + 1
|
|
|
|
jb = 0
|
|
do j=nC+1,nO
|
|
do b=nO+1,nBas-nR
|
|
jb = jb + 1
|
|
|
|
do k=nC+1,nO
|
|
do c=nO+1,nBas-nR
|
|
|
|
dem = OmBSE - eGF(a) + eGF(k) - eGF(c) + eGF(j)
|
|
num = 2d0*ERI(j,k,i,c)*ERI(a,c,b,k) - ERI(j,k,i,c)*ERI(a,c,k,b) &
|
|
- ERI(j,k,c,i)*ERI(a,c,b,k) + 2d0*ERI(j,k,c,i)*ERI(a,c,k,b)
|
|
|
|
A_dyn(ia,jb) = A_dyn(ia,jb) - num*dem/(dem**2 + eta**2)
|
|
ZA_dyn(ia,jb) = ZA_dyn(ia,jb) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
dem = OmBSE + eGF(i) - eGF(c) + eGF(k) - eGF(b)
|
|
num = 2d0*ERI(j,c,i,k)*ERI(a,k,b,c) - ERI(j,c,i,k)*ERI(a,k,c,b) &
|
|
- ERI(j,c,k,i)*ERI(a,k,b,c) + 2d0*ERI(j,c,k,i)*ERI(a,k,c,b)
|
|
|
|
A_dyn(ia,jb) = A_dyn(ia,jb) - num*dem/(dem**2 + eta**2)
|
|
ZA_dyn(ia,jb) = ZA_dyn(ia,jb) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
end do
|
|
end do
|
|
|
|
do c=nO+1,nBas-nR
|
|
do d=nO+1,nBas-nR
|
|
|
|
dem = OmBSE + eGF(i) + eGF(j) - eGF(c) - eGF(d)
|
|
num = 2d0*ERI(a,j,c,d)*ERI(c,d,i,b) - ERI(a,j,c,d)*ERI(c,d,b,i) &
|
|
- ERI(a,j,d,c)*ERI(c,d,i,b) + 2d0*ERI(a,j,d,c)*ERI(c,d,b,i)
|
|
|
|
A_dyn(ia,jb) = A_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
|
|
ZA_dyn(ia,jb) = ZA_dyn(ia,jb) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
end do
|
|
end do
|
|
|
|
do k=nC+1,nO
|
|
do l=nC+1,nO
|
|
|
|
dem = OmBSE - eGF(a) - eGF(b) + eGF(k) + eGF(l)
|
|
num = 2d0*ERI(a,j,k,l)*ERI(k,l,i,b) - ERI(a,j,k,l)*ERI(k,l,b,i) &
|
|
- ERI(a,j,l,k)*ERI(k,l,i,b) + 2d0*ERI(a,j,l,k)*ERI(k,l,b,i)
|
|
|
|
A_dyn(ia,jb) = A_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
|
|
ZA_dyn(ia,jb) = ZA_dyn(ia,jb) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
end do
|
|
end do
|
|
|
|
end do
|
|
end do
|
|
|
|
end do
|
|
end do
|
|
|
|
end if
|
|
|
|
! Second-order correlation kernel for the block A of the triplet manifold
|
|
|
|
if(ispin == 2) then
|
|
|
|
ia = 0
|
|
do i=nC+1,nO
|
|
do a=nO+1,nBas-nR
|
|
ia = ia + 1
|
|
|
|
jb = 0
|
|
do j=nC+1,nO
|
|
do b=nO+1,nBas-nR
|
|
jb = jb + 1
|
|
|
|
do k=nC+1,nO
|
|
do c=nO+1,nBas-nR
|
|
|
|
dem = OmBSE - eGF(a) + eGF(k) - eGF(c) + eGF(j)
|
|
num = 2d0*ERI(j,k,i,c)*ERI(a,c,b,k) - ERI(j,k,i,c)*ERI(a,c,k,b) - ERI(j,k,c,i)*ERI(a,c,b,k)
|
|
|
|
A_dyn(ia,jb) = A_dyn(ia,jb) - num*dem/(dem**2 + eta**2)
|
|
ZA_dyn(ia,jb) = ZA_dyn(ia,jb) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
dem = OmBSE + eGF(i) - eGF(c) + eGF(k) - eGF(b)
|
|
num = 2d0*ERI(j,c,i,k)*ERI(a,k,b,c) - ERI(j,c,i,k)*ERI(a,k,c,b) - ERI(j,c,k,i)*ERI(a,k,b,c)
|
|
|
|
A_dyn(ia,jb) = A_dyn(ia,jb) - num*dem/(dem**2 + eta**2)
|
|
ZA_dyn(ia,jb) = ZA_dyn(ia,jb) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
end do
|
|
end do
|
|
|
|
do c=nO+1,nBas-nR
|
|
do d=nO+1,nBas-nR
|
|
|
|
dem = OmBSE + eGF(i) + eGF(j) - eGF(c) - eGF(d)
|
|
num = ERI(a,j,c,d)*ERI(c,d,b,i) + ERI(a,j,d,c)*ERI(c,d,i,b)
|
|
|
|
A_dyn(ia,jb) = A_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
|
|
ZA_dyn(ia,jb) = ZA_dyn(ia,jb) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
end do
|
|
end do
|
|
|
|
do k=nC+1,nO
|
|
do l=nC+1,nO
|
|
|
|
dem = OmBSE - eGF(a) - eGF(b) + eGF(k) + eGF(l)
|
|
num = ERI(a,j,k,l)*ERI(k,l,b,i) + ERI(a,j,l,k)*ERI(k,l,i,b)
|
|
|
|
A_dyn(ia,jb) = A_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
|
|
ZA_dyn(ia,jb) = ZA_dyn(ia,jb) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
|
|
|
|
end do
|
|
end do
|
|
|
|
end do
|
|
end do
|
|
|
|
end do
|
|
end do
|
|
|
|
end if
|
|
|
|
|
|
end subroutine BSE2_A_matrix_dynamic
|