mirror of
https://github.com/pfloos/quack
synced 2025-04-24 09:14:54 +02:00
257 lines
8.2 KiB
Fortran
257 lines
8.2 KiB
Fortran
subroutine UG0W0(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,TDA_W,TDA,dBSE,dTDA,spin_conserved,spin_flip, &
|
|
linearize,eta,regularize,nBas,nC,nO,nV,nR,nS,ENuc,EUHF,S,ERI_aaaa,ERI_aabb,ERI_bbbb, &
|
|
dipole_int_aa,dipole_int_bb,cHF,eHF)
|
|
|
|
! Perform unrestricted G0W0 calculation
|
|
|
|
implicit none
|
|
include 'parameters.h'
|
|
include 'quadrature.h'
|
|
|
|
! Input variables
|
|
|
|
logical,intent(in) :: dotest
|
|
|
|
logical,intent(in) :: doACFDT
|
|
logical,intent(in) :: exchange_kernel
|
|
logical,intent(in) :: doXBS
|
|
logical,intent(in) :: dophBSE
|
|
logical,intent(in) :: TDA_W
|
|
logical,intent(in) :: TDA
|
|
logical,intent(in) :: dBSE
|
|
logical,intent(in) :: dTDA
|
|
logical,intent(in) :: spin_conserved
|
|
logical,intent(in) :: spin_flip
|
|
logical,intent(in) :: linearize
|
|
double precision,intent(in) :: eta
|
|
logical,intent(in) :: regularize
|
|
|
|
integer,intent(in) :: nBas
|
|
integer,intent(in) :: nC(nspin)
|
|
integer,intent(in) :: nO(nspin)
|
|
integer,intent(in) :: nV(nspin)
|
|
integer,intent(in) :: nR(nspin)
|
|
integer,intent(in) :: nS(nspin)
|
|
double precision,intent(in) :: ENuc
|
|
double precision,intent(in) :: EUHF
|
|
double precision,intent(in) :: S(nBas,nBas)
|
|
double precision,intent(in) :: ERI_aaaa(nBas,nBas,nBas,nBas)
|
|
double precision,intent(in) :: ERI_aabb(nBas,nBas,nBas,nBas)
|
|
double precision,intent(in) :: ERI_bbbb(nBas,nBas,nBas,nBas)
|
|
double precision,intent(in) :: dipole_int_aa(nBas,nBas,ncart)
|
|
double precision,intent(in) :: dipole_int_bb(nBas,nBas,ncart)
|
|
double precision,intent(in) :: eHF(nBas,nspin)
|
|
double precision,intent(in) :: cHF(nBas,nBas,nspin)
|
|
|
|
! Local variables
|
|
|
|
logical :: print_W = .true.
|
|
logical :: dRPA
|
|
integer :: is
|
|
integer :: ispin
|
|
double precision :: EcRPA
|
|
double precision :: EcGM(nspin)
|
|
double precision :: EcBSE(nspin)
|
|
double precision,allocatable :: SigC(:,:)
|
|
double precision,allocatable :: Z(:,:)
|
|
integer :: nSa,nSb,nSt
|
|
|
|
double precision,allocatable :: Aph(:,:)
|
|
double precision,allocatable :: Bph(:,:)
|
|
double precision,allocatable :: Om(:)
|
|
double precision,allocatable :: XpY(:,:)
|
|
double precision,allocatable :: XmY(:,:)
|
|
double precision,allocatable :: rho(:,:,:,:)
|
|
|
|
double precision,allocatable :: eGWlin(:,:)
|
|
double precision,allocatable :: eGW(:,:)
|
|
|
|
! Hello world
|
|
|
|
write(*,*)
|
|
write(*,*)'*********************************'
|
|
write(*,*)'* Unrestricted G0W0 Calculation *'
|
|
write(*,*)'*********************************'
|
|
write(*,*)
|
|
|
|
! Initialization
|
|
|
|
EcRPA = 0d0
|
|
dRPA = .true.
|
|
|
|
! TDA for W
|
|
|
|
if(TDA_W) then
|
|
write(*,*) 'Tamm-Dancoff approximation for dynamic screening!'
|
|
write(*,*)
|
|
end if
|
|
|
|
! TDA
|
|
|
|
if(TDA) then
|
|
write(*,*) 'Tamm-Dancoff approximation activated!'
|
|
write(*,*)
|
|
end if
|
|
|
|
! Memory allocation
|
|
|
|
nSa = nS(1)
|
|
nSb = nS(2)
|
|
nSt = nSa + nSb
|
|
|
|
allocate(SigC(nBas,nspin),Z(nBas,nspin),eGWlin(nBas,nspin),eGW(nBas,nspin), &
|
|
Aph(nSt,nSt),Bph(nSt,nSt),Om(nSt),XpY(nSt,nSt),XmY(nSt,nSt),rho(nBas,nBas,nSt,nspin))
|
|
|
|
!-------------------!
|
|
! Compute screening !
|
|
!-------------------!
|
|
|
|
! Spin-conserving transitions
|
|
|
|
ispin = 1
|
|
|
|
call phULR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nSa,nSb,nSt,1d0,eHF,ERI_aaaa,ERI_aabb,ERI_bbbb,Aph)
|
|
if(.not.TDA) call phULR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nSa,nSb,nSt,1d0,ERI_aaaa,ERI_aabb,ERI_bbbb,Bph)
|
|
|
|
call phULR(TDA_W,nSa,nSb,nSt,Aph,Bph,EcRPA,Om,XpY,XmY)
|
|
|
|
if(print_W) call print_excitation_energies('phRPA@UHF','spin-conserved',nSt,Om)
|
|
|
|
!----------------------!
|
|
! Excitation densities !
|
|
!----------------------!
|
|
|
|
call UGW_excitation_density(nBas,nC,nO,nR,nSa,nSb,nSt,ERI_aaaa,ERI_aabb,ERI_bbbb,XpY,rho)
|
|
|
|
!------------------------------------------------!
|
|
! Compute self-energy and renormalization factor !
|
|
!------------------------------------------------!
|
|
|
|
if(regularize) then
|
|
do is=1,nspin
|
|
call GW_regularization(nBas,nC(is),nO(is),nV(is),nR(is),nSt,eHF(:,is),Om,rho(:,:,:,is))
|
|
end do
|
|
end if
|
|
|
|
call UGW_self_energy_diag(eta,nBas,nC,nO,nV,nR,nSt,eHF,Om,rho,SigC,Z,EcGM)
|
|
|
|
!-----------------------------------!
|
|
! Solve the quasi-particle equation !
|
|
!-----------------------------------!
|
|
|
|
eGWlin(:,:) = eHF(:,:) + Z(:,:)*SigC(:,:)
|
|
|
|
if(linearize) then
|
|
|
|
write(*,*) ' *** Quasiparticle energies obtained by linearization *** '
|
|
write(*,*)
|
|
|
|
eGW(:,:) = eGWlin(:,:)
|
|
|
|
else
|
|
|
|
! Find graphical solution of the QP equation
|
|
|
|
write(*,*) ' *** Quasiparticle energies obtained by root search *** '
|
|
write(*,*)
|
|
|
|
do is=1,nspin
|
|
|
|
write(*,*)'-----------------------------------------------------'
|
|
if(is==1) write(*,*)' Spin-up orbitals '
|
|
if(is==2) write(*,*)' Spin-down orbitals '
|
|
|
|
call UGW_QP_graph(eta,nBas,nC(is),nO(is),nV(is),nR(is),nSt,eHF(:,is), &
|
|
Om,rho(:,:,:,is),eGWlin(:,is),eHF(:,is),eGW(:,is),Z(:,is))
|
|
end do
|
|
|
|
end if
|
|
|
|
! Compute RPA correlation energy
|
|
|
|
call phULR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nSa,nSb,nSt,1d0,eGW,ERI_aaaa,ERI_aabb,ERI_bbbb,Aph)
|
|
if(.not.TDA) call phULR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nSa,nSb,nSt,1d0,ERI_aaaa,ERI_aabb,ERI_bbbb,Bph)
|
|
|
|
call phULR(TDA_W,nSa,nSb,nSt,Aph,Bph,EcRPA,Om,XpY,XmY)
|
|
|
|
! Dump results
|
|
|
|
call print_UG0W0(nBas,nO,eHF,ENuc,EUHF,SigC,Z,eGW,EcRPA,EcGM)
|
|
|
|
! Free memory
|
|
|
|
deallocate(Om,XpY,XmY,rho)
|
|
|
|
! Perform BSE calculation
|
|
|
|
if(dophBSE) then
|
|
|
|
call UGW_phBSE(TDA_W,TDA,dBSE,dTDA,spin_conserved,spin_flip,eta,nBas,nC,nO,nV,nR,nS,S, &
|
|
ERI_aaaa,ERI_aabb,ERI_bbbb,dipole_int_aa,dipole_int_bb,cHF,eHF,eGW,EcBSE)
|
|
|
|
if(exchange_kernel) then
|
|
|
|
EcBSE(1) = 0.5d0*EcBSE(1)
|
|
EcBSE(2) = 0.5d0*EcBSE(2)
|
|
|
|
else
|
|
|
|
EcBSE(2) = 0.0d0
|
|
|
|
end if
|
|
|
|
write(*,*)
|
|
write(*,*)'-------------------------------------------------------------------------------'
|
|
write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@G0W0@UHF correlation energy (spin-conserved) = ',EcBSE(1),' au'
|
|
write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@G0W0@UHF correlation energy (spin-flip) = ',EcBSE(2),' au'
|
|
write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@G0W0@UHF correlation energy = ',sum(EcBSE),' au'
|
|
write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@G0W0@UHF total energy = ',ENuc + EUHF + sum(EcBSE),' au'
|
|
write(*,*)'-------------------------------------------------------------------------------'
|
|
write(*,*)
|
|
|
|
! Compute the BSE correlation energy via the adiabatic connection
|
|
|
|
if(doACFDT) then
|
|
|
|
write(*,*) '------------------------------------------------------------'
|
|
write(*,*) 'Adiabatic connection version of BSE@UG0W0 correlation energy'
|
|
write(*,*) '------------------------------------------------------------'
|
|
write(*,*)
|
|
|
|
if(doXBS) then
|
|
|
|
write(*,*) '*** scaled screening version (XBS) ***'
|
|
write(*,*)
|
|
|
|
end if
|
|
|
|
call UGW_phACFDT(exchange_kernel,doXBS,.true.,TDA_W,TDA,dophBSE,spin_conserved,spin_flip,eta, &
|
|
nBas,nC,nO,nV,nR,nS,ERI_aaaa,ERI_aabb,ERI_bbbb,eHF,eGW,EcBSE)
|
|
|
|
write(*,*)
|
|
write(*,*)'-------------------------------------------------------------------------------'
|
|
write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@G0W0@UHF correlation energy (spin-conserved) = ',EcBSE(1),' au'
|
|
write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@G0W0@UHF correlation energy (spin-flip) = ',EcBSE(2),' au'
|
|
write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@G0W0@UHF correlation energy = ',sum(EcBSE),' au'
|
|
write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@G0W0@UHF total energy = ',ENuc + EUHF + sum(EcBSE),' au'
|
|
write(*,*)'-------------------------------------------------------------------------------'
|
|
write(*,*)
|
|
|
|
end if
|
|
|
|
end if
|
|
|
|
! Testing zone
|
|
|
|
if(dotest) then
|
|
|
|
call dump_test_value('U','G0W0 correlation energy',EcRPA)
|
|
call dump_test_value('U','G0W0 HOMOa energy',eGW(nO(1),1))
|
|
call dump_test_value('U','G0W0 LUMOa energy',eGW(nO(1)+1,1))
|
|
call dump_test_value('U','G0W0 HOMOa energy',eGW(nO(2),2))
|
|
call dump_test_value('U','G0W0 LUMOa energy',eGW(nO(2)+1,2))
|
|
|
|
end if
|
|
|
|
end subroutine
|