10
1
mirror of https://github.com/pfloos/quack synced 2025-01-08 04:15:56 +01:00
QuAcK/src/RPA/crRPA.f90

128 lines
4.2 KiB
Fortran

subroutine crRPA(TDA,doACFDT,exchange_kernel,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ENuc,ERHF, &
ERI,dipole_int,eHF)
! Crossed-ring channel of the random phase approximation
implicit none
include 'parameters.h'
include 'quadrature.h'
! Input variables
logical,intent(in) :: TDA
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: singlet
double precision,intent(in) :: eta
logical,intent(in) :: triplet
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
! Local variables
integer :: ispin
double precision,allocatable :: Om(:,:)
double precision,allocatable :: XpY(:,:,:)
double precision,allocatable :: XmY(:,:,:)
double precision :: EcRPAx(nspin)
double precision :: EcAC(nspin)
! Hello world
write(*,*)
write(*,*)'***********************************************************'
write(*,*)'| Random phase approximation calculation: cr channel |'
write(*,*)'***********************************************************'
write(*,*)
! TDA
if(TDA) then
write(*,*) 'Tamm-Dancoff approximation activated!'
write(*,*)
end if
! Initialization
EcRPAx(:) = 0d0
EcAC(:) = 0d0
! Memory allocation
allocate(Om(nS,nspin),XpY(nS,nS,nspin),XmY(nS,nS,nspin))
! Singlet manifold
if(singlet) then
ispin = 1
call phLR(ispin,.false.,TDA,eta,nBas,nC,nO,nV,nR,nS,-1d0,eHF,ERI,EcRPAx(ispin),Om(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
call print_excitation('crRPA@HF ',ispin,nS,Om(:,ispin))
call print_transition_vectors_ph(.true.,nBas,nC,nO,nV,nR,nS,dipole_int,Om(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
endif
! Triplet manifold
if(triplet) then
ispin = 2
call phLR(ispin,.false.,TDA,eta,nBas,nC,nO,nV,nR,nS,-1d0,eHF,ERI,EcRPAx(ispin),Om(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
call print_excitation('crRPA@HF ',ispin,nS,Om(:,ispin))
call print_transition_vectors_ph(.false.,nBas,nC,nO,nV,nR,nS,dipole_int,Om(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
endif
! if(exchange_kernel) then
EcRPAx(1) = 0.5d0*EcRPAx(1)
EcRPAx(2) = 1.5d0*EcRPAx(2)
! end if
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10)') 'Tr@crRPA correlation energy (singlet) =',EcRPAx(1)
write(*,'(2X,A50,F20.10)') 'Tr@crRPA correlation energy (triplet) =',EcRPAx(2)
write(*,'(2X,A50,F20.10)') 'Tr@crRPA correlation energy =',EcRPAx(1) + EcRPAx(2)
write(*,'(2X,A50,F20.10)') 'Tr@crRPA total energy =',ENuc + ERHF + EcRPAx(1) + EcRPAx(2)
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
! Compute the correlation energy via the adiabatic connection
if(doACFDT) then
write(*,*) '-------------------------------------------------------'
write(*,*) 'Adiabatic connection version of crRPA correlation energy'
write(*,*) '-------------------------------------------------------'
write(*,*)
call crACFDT(exchange_kernel,.false.,.false.,.false.,TDA,.false.,singlet,triplet,eta, &
nBas,nC,nO,nV,nR,nS,ERI,eHF,eHF,EcAC)
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10)') 'AC@crRPA correlation energy (singlet) =',EcAC(1)
write(*,'(2X,A50,F20.10)') 'AC@crRPA correlation energy (triplet) =',EcAC(2)
write(*,'(2X,A50,F20.10)') 'AC@crRPA correlation energy =',EcAC(1) + EcAC(2)
write(*,'(2X,A50,F20.10)') 'AC@crRPA total energy =',ENuc + ERHF + EcAC(1) + EcAC(2)
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
end if
end subroutine