10
1
mirror of https://github.com/pfloos/quack synced 2025-01-05 19:08:46 +01:00
QuAcK/src/GW/eomRG0W0.f90
Pierre-Francois Loos 486fde26d5 new logo
2024-09-19 17:09:20 +02:00

316 lines
8.0 KiB
Fortran

subroutine eomRG0W0(dotest,nBas,nOrb,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF)
! EOM version of G0W0
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: dotest
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
double precision,intent(in) :: eHF(nOrb)
! Local variables
integer :: p
integer :: s
integer :: i,j,k,l
integer :: a,b,c,d
integer :: jb,kc,ia,ja
integer :: klc,kcd,ija,ijb,iab,jab
logical :: print_W = .false.
logical :: dRPA
integer :: isp_W
double precision :: EcRPA
integer :: n2h1p,n2p1h,nH
double precision,external :: Kronecker_delta
double precision,allocatable :: H(:,:)
double precision,allocatable :: cGW(:,:)
double precision,allocatable :: eGW(:)
double precision,allocatable :: Z(:)
integer,allocatable :: order(:)
logical :: verbose = .false.
double precision,parameter :: cutoff1 = 0.01d0
double precision,parameter :: cutoff2 = 0.01d0
double precision :: eF
double precision,parameter :: window = 2.5d0
double precision :: start_timing,end_timing,timing
! Output variables
! Hello world
write(*,*)
write(*,*)'***********************************'
write(*,*)'* Restricted EOM-G0W0 Calculation *'
write(*,*)'***********************************'
write(*,*)
! Dimension of the supermatrix
n2h1p = nO*nO*nV
n2p1h = nV*nV*nO
nH = 1 + n2h1p + n2p1h
! Memory allocation
allocate(H(nH,nH),eGW(nH),cGW(nH,nH),Z(nH),order(nH))
! Initialization
dRPA = .true.
EcRPA = 0d0
eF = 0.5d0*(eHF(nO+1) + eHF(nO))
!-------------------------!
! Main loop over orbitals !
!-------------------------!
do p=nO,nO+1
H(:,:) = 0d0
!-----------------------------------------!
! Compute BSE supermatrix !
!-----------------------------------------!
! !
! | A V2h1p V2p1h 0 0 | !
! | | !
! | V2h1p A2h2p 0 B2h1p 0 | !
! | | !
! H = | V2p1h 0 A2p2h 0 B2p1h | !
! | | !
! | 0 0 0 0 0 | !
! | | !
! | 0 0 0 0 0 | !
! !
!-----------------------------------------!
call wall_time(start_timing)
!---------!
! Block F !
!---------!
H(1,1) = eHF(p)
!-------------!
! Block V2h1p !
!-------------!
ija = 0
do i=nC+1,nO
do j=nC+1,nO
do a=nO+1,nOrb-nR
ija = ija + 1
H(1 ,1+ija) = sqrt(2d0)*ERI(p,a,i,j)
H(1+ija,1 ) = sqrt(2d0)*ERI(p,a,i,j)
! H(1+n2h1p+n2p1h+ija,1 ) = sqrt(2d0)*ERI(p,a,i,j)
! H(1+ija,1+n2h1p+n2p1h ) = sqrt(2d0)*ERI(p,a,i,j)
end do
end do
end do
!-------------!
! Block V2p1h !
!-------------!
iab = 0
do i=nC+1,nO
do a=nO+1,nOrb-nR
do b=nO+1,nOrb-nR
iab = iab + 1
H(1 ,1+n2h1p+iab) = sqrt(2d0)*ERI(p,i,b,a)
H(1+n2h1p+iab,1 ) = sqrt(2d0)*ERI(p,i,b,a)
! H(1 ,1+2*n2h1p+n2p1h+iab) = sqrt(2d0)*ERI(p,i,b,a)
! H(1+2*n2h1p+n2p1h+iab,1 ) = sqrt(2d0)*ERI(p,i,b,a)
end do
end do
end do
!-------------!
! Block A2h1p !
!-------------!
ija = 0
do i=nC+1,nO
do j=nC+1,nO
do a=nO+1,nOrb-nR
ija = ija + 1
klc = 0
do k=nC+1,nO
do l=nC+1,nO
do c=nO+1,nOrb-nR
klc = klc + 1
H(1+ija,1+klc) &
= ((eHF(i) + eHF(j) - eHF(a))*Kronecker_delta(j,l)*Kronecker_delta(a,c) &
- 2d0*ERI(j,c,a,l) - 2d0*ERI(j,l,a,c))*Kronecker_delta(i,k)
! H(1+n2h1p+n2p1h+ija,1+n2h1p+n2p1h+klc) &
! = ((eHF(i) + eHF(j) - eHF(a))*Kronecker_delta(j,l)*Kronecker_delta(a,c) &
! - 2d0*ERI(j,c,a,l))*Kronecker_delta(i,k)
end do
end do
end do
end do
end do
end do
!-------------!
! Block A2p1h !
!-------------!
iab = 0
do i=nC+1,nO
do a=nO+1,nOrb-nR
do b=nO+1,nOrb-nR
iab = iab + 1
kcd = 0
do k=nC+1,nO
do c=nO+1,nOrb-nR
do d=nO+1,nOrb-nR
kcd = kcd + 1
H(1+n2h1p+iab,1+n2h1p+kcd) &
= ((eHF(a) + eHF(b) - eHF(i))*Kronecker_delta(i,k)*Kronecker_delta(a,c) &
+ 2d0*ERI(a,k,i,c) + 2d0*ERI(a,c,i,k))*Kronecker_delta(b,d)
! H(1+2*n2h1p+n2p1h+iab,1+2*n2h1p+n2p1h+kcd) &
! = ((eHF(a) + eHF(b) - eHF(i))*Kronecker_delta(i,k)*Kronecker_delta(a,c) &
! + 2d0*ERI(a,k,i,c))*Kronecker_delta(b,d)
end do
end do
end do
end do
end do
end do
!-------------!
! Block B2h1p !
!-------------!
! ija = 0
! do i=nC+1,nO
! do j=nC+1,nO
! do a=nO+1,nOrb-nR
! ija = ija + 1
! kcd = 0
! do k=nC+1,nO
! do c=nO+1,nOrb-nR
! do d=nO+1,nOrb-nR
! kcd = kcd + 1
!
! H(1+ija,1+n2h1p+kcd) = - 2d0*ERI(j,k,a,c)
!
! end do
! end do
! end do
!
! end do
! end do
! end do
!-------------!
! Block B2p1h !
!-------------!
! iab = 0
! do i=nC+1,nO
! do a=nO+1,nOrb-nR
! do b=nO+1,nOrb-nR
! iab = iab + 1
! klc = 0
! do k=nC+1,nO
! do l=nC+1,nO
! do c=nO+1,nOrb-nR
! klc = klc + 1
! H(1+n2h1p+iab,1+klc) = - 2d0*ERI(a,c,i,l)
!
! end do
! end do
! end do
!
! end do
! end do
! end do
!-------------------------!
! Diagonalize supermatrix !
!-------------------------!
call wall_time(start_timing)
call diagonalize_general_matrix(nH,H,eGW,cGW)
do s=1,nH
order(s) = s
end do
call quick_sort(eGW,order,nH)
call set_order(cGW,order,nH,nH)
call wall_time(end_timing)
timing = end_timing - start_timing
write(*,*)
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time for construction of supermatrix = ',timing,' seconds'
write(*,*)
!-----------------!
! Compute weights !
!-----------------!
do s=1,nH
Z(s) = cGW(1,s)**2
end do
write(*,*)'-------------------------------------------'
write(*,'(1X,A32,I3,A8)')'| G0W0 energies (eV) for orbital',p,' |'
write(*,*)'-------------------------------------------'
write(*,'(1X,A1,1X,A3,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X)') &
'|','#','|','e_QP','|','Z','|'
write(*,*)'-------------------------------------------'
do s=1,nH
! if(eGW(s) < eF .and. eGW(s) > eF - window) then
if(Z(s) > cutoff1) then
write(*,'(1X,A1,1X,I3,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X)') &
'|',s,'|',eGW(s)*HaToeV,'|',Z(s),'|'
end if
end do
write(*,*)'-------------------------------------------'
write(*,*)
end do ! Loop on the orbital in the e block
end subroutine