10
1
mirror of https://github.com/pfloos/quack synced 2024-11-06 22:23:53 +01:00
QuAcK/src/IntPak/GF12Int.f90

108 lines
2.9 KiB
Fortran

function GF12Int(ExpG,ExpA,CenterA,AngMomA,ExpB,CenterB,AngMomB,ExpC,CenterC,AngMomC,ExpD,CenterD,AngMomD)
! Compute two-electron integrals over Gaussian geminals
implicit none
! Input variables
double precision,intent(in) :: ExpG
double precision,intent(in) :: ExpA,ExpB,ExpC,ExpD
double precision,intent(in) :: CenterA(3),CenterB(3),CenterC(3),CenterD(3)
integer,intent(in) :: AngMomA(3),AngMomB(3),AngMomC(3),AngMomD(3)
! Local variables
double precision :: ExpAi,ExpBi,ExpCi,ExpDi,ExpGi
double precision :: ExpP,ExpQ,ExpPi,ExpQi,ExpPGQi
double precision :: CenterP(3),CenterQ(3),CenterAB(3),CenterCD(3),CenterPQSq(3),CenterRA(3),CenterRC(3)
double precision :: NormABSq,NormCDSq
double precision :: GAB,GCD
double precision :: fP,fG,fQ,gP,gG,gQ
double precision :: HRRF12
integer :: i
double precision :: pi
double precision :: start_RR,finish_RR,t_RR
double precision :: Gabcd(3)
! Output variables
double precision :: GF12Int
pi = 4d0*atan(1d0)
! Pre-computed shell quantities
ExpAi = 1d0/ExpA
ExpBi = 1d0/ExpB
ExpCi = 1d0/ExpC
ExpDi = 1d0/ExpD
ExpGi = 1d0/ExpG
! Pre-computed quantities for shell-pair AB
ExpP = ExpA + ExpB
ExpPi = 1d0/ExpP
NormABSq = 0d0
Do i=1,3
CenterP(i) = (ExpA*CenterA(i) + ExpB*CenterB(i))*ExpPi
CenterAB(i) = CenterA(i) - CenterB(i)
NormABSq = NormABSq + CenterAB(i)**2
Enddo
GAB = (pi*ExpPi)**(1.5d0)*exp(-NormABSq/(ExpAi+ExpBi))
! Pre-computed quantities for shell-pair CD
ExpQ = ExpC + ExpD
ExpQi = 1d0/ExpQ
NormCDSq = 0d0
Do i=1,3
CenterQ(i) = (ExpC*CenterC(i) + ExpD*CenterD(i))*ExpQi
CenterCD(i) = CenterC(i) - CenterD(i)
NormCDSq = NormCDSq + CenterCD(i)**2
Enddo
GCD = (pi*ExpQi)**(1.5d0)*exp(-NormCDSq/(ExpCi+ExpDi))
! Pre-computed shell-quartet quantities
ExpPGQi = ExpPi + ExpGi + ExpQi
Do i=1,3
CenterPQSq(i) = (CenterP(i) - CenterQ(i))**2
Enddo
fP = ExpPi/ExpPGQi
fG = ExpGi/ExpPGQi
fQ = ExpQi/ExpPGQi
gP = (1d0 - fP)*0.5d0*ExpPi
gG = fP*0.5d0*expQi
gQ = (1d0 - fQ)*0.5d0*ExpQi
do i=1,3
CenterRA(i) = CenterP(i) - CenterA(i) + fP*(CenterQ(i) - CenterP(i))
CenterRC(i) = CenterQ(i) - CenterC(i) + fQ*(CenterP(i) - CenterQ(i))
enddo
!------------------------------------------------------------------------
! Launch reccurence relations!
!------------------------------------------------------------------------
call cpu_time(start_RR)
! Loop over cartesian directions
Do i=1,3
Gabcd(i) = HRRF12(AngMomA(i),AngMomB(i),AngMomC(i),AngMomD(i),fG,gP,gG,gQ,ExpPGQi, &
CenterPQSq(i),CenterRA(i),CenterRC(i),CenterAB(i),CenterCD(i))
Enddo
call cpu_time(finish_RR)
! Print result
GF12Int = GAB*GCD*Gabcd(1)*Gabcd(2)*Gabcd(3)
t_RR = finish_RR - start_RR
end function GF12Int