QuAcK/src/HF/print_UHF.f90

150 lines
6.6 KiB
Fortran

subroutine print_UHF(nBas,nO,S,eHF,c,P,ENuc,ET,EV,EJ,Ex,EUHF,dipole)
! Print one- and two-electron energies and other stuff for UHF calculation
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nO(nspin)
double precision,intent(in) :: S(nBas,nBas)
double precision,intent(in) :: eHF(nBas,nspin)
double precision,intent(in) :: c(nBas,nBas,nspin)
double precision,intent(in) :: P(nBas,nBas,nspin)
double precision,intent(in) :: ENuc
double precision,intent(in) :: ET(nspin)
double precision,intent(in) :: EV(nspin)
double precision,intent(in) :: EJ(nsp)
double precision,intent(in) :: Ex(nspin)
double precision,intent(in) :: EUHF
double precision,intent(in) :: dipole(ncart)
! Local variables
integer :: ixyz
integer :: ispin
double precision :: HOMO(nspin)
double precision :: LUMO(nspin)
double precision :: Gap(nspin)
double precision :: Sz
double precision :: Sx2,Sy2,Sz2
integer :: mu,nu
double precision,allocatable :: qa(:),qb(:)
logical :: dump_orb = .true.
! HOMO and LUMO
do ispin=1,nspin
if(nO(ispin) > 0) then
HOMO(ispin) = eHF(nO(ispin),ispin)
if(nO(ispin) < nBas) then
LUMO(ispin) = eHF(nO(ispin)+1,ispin)
else
LUMO(ispin) = 0d0
end if
Gap(ispin) = LUMO(ispin) - HOMO(ispin)
else
HOMO(ispin) = 0d0
LUMO(ispin) = eHF(1,ispin)
Gap(ispin) = 0d0
end if
end do
Sz = 0.5d0*dble(nO(1) - nO(2))
Sx2 = 0.25d0*dble(nO(1) - nO(2)) + 0.5d0*nO(2) - 0.5d0*sum(matmul(transpose(c(:,1:nO(1),1)),matmul(S,c(:,1:nO(2),2)))**2)
Sy2 = 0.25d0*dble(nO(1) - nO(2)) + 0.5d0*nO(2) - 0.5d0*sum(matmul(transpose(c(:,1:nO(1),1)),matmul(S,c(:,1:nO(2),2)))**2)
Sz2 = 0.25d0*dble(nO(1) - nO(2))**2
! Dump results
write(*,*)
write(*,'(A60)') '---------------------------------------------'
write(*,'(A40)') ' Summary '
write(*,'(A60)') '---------------------------------------------'
write(*,'(A40,1X,F16.10,A3)') ' One-electron energy = ',sum(ET) + sum(EV),' au'
write(*,'(A40,1X,F16.10,A3)') ' One-electron a energy = ',ET(1) + EV(1),' au'
write(*,'(A40,1X,F16.10,A3)') ' One-electron b energy = ',ET(2) + EV(2),' au'
write(*,'(A40,1X,F16.10,A3)') ' Kinetic energy = ',sum(ET),' au'
write(*,'(A40,1X,F16.10,A3)') ' Kinetic a energy = ',ET(1),' au'
write(*,'(A40,1X,F16.10,A3)') ' Kinetic b energy = ',ET(2),' au'
write(*,'(A40,1X,F16.10,A3)') ' Potential energy = ',sum(EV),' au'
write(*,'(A40,1X,F16.10,A3)') ' Potential a energy = ',EV(1),' au'
write(*,'(A40,1X,F16.10,A3)') ' Potential b energy = ',EV(2),' au'
write(*,'(A60)') '---------------------------------------------'
write(*,'(A40,1X,F16.10,A3)') ' Two-electron energy = ',sum(EJ) + sum(Ex),' au'
write(*,'(A40,1X,F16.10,A3)') ' Two-electron aa energy = ',EJ(1) + Ex(1),' au'
write(*,'(A40,1X,F16.10,A3)') ' Two-electron ab energy = ',EJ(2),' au'
write(*,'(A40,1X,F16.10,A3)') ' Two-electron bb energy = ',EJ(3) + Ex(2),' au'
write(*,'(A40,1X,F16.10,A3)') ' Hartree energy = ',sum(EJ),' au'
write(*,'(A40,1X,F16.10,A3)') ' Hartree aa energy = ',EJ(1),' au'
write(*,'(A40,1X,F16.10,A3)') ' Hartree ab energy = ',EJ(2),' au'
write(*,'(A40,1X,F16.10,A3)') ' Hartree bb energy = ',EJ(3),' au'
write(*,'(A40,1X,F16.10,A3)') ' Exchange energy = ',sum(Ex),' au'
write(*,'(A40,1X,F16.10,A3)') ' Exchange a energy = ',Ex(1),' au'
write(*,'(A40,1X,F16.10,A3)') ' Exchange b energy = ',Ex(2),' au'
write(*,'(A60)') '---------------------------------------------'
write(*,'(A40,1X,F16.10,A3)') ' Electronic energy = ',EUHF,' au'
write(*,'(A40,1X,F16.10,A3)') ' Nuclear repulsion = ',ENuc,' au'
write(*,'(A40,1X,F16.10,A3)') ' UHF energy = ',EUHF + ENuc,' au'
write(*,'(A60)') '---------------------------------------------'
write(*,'(A40,1X,F16.6,A3)') ' UHF HOMO a energy = ' ,HOMO(1)*HatoeV,' eV'
write(*,'(A40,1X,F16.6,A3)') ' UHF LUMO a energy = ' ,LUMO(1)*HatoeV,' eV'
write(*,'(A40,1X,F16.6,A3)') ' UHF HOMOa-LUMOa gap = ' ,Gap(1)*HatoeV,' eV'
write(*,'(A60)') '---------------------------------------------'
write(*,'(A40,1X,F16.6,A3)') ' UHF HOMO b energy = ',HOMO(2)*HatoeV,' eV'
write(*,'(A40,1X,F16.6,A3)') ' UHF LUMO b energy = ',LUMO(2)*HatoeV,' eV'
write(*,'(A40,1X,F16.6,A3)') ' UHF HOMOb-LUMOb gap = ',Gap(2)*HatoeV,' eV'
write(*,'(A60)') '---------------------------------------------'
write(*,'(A40,1X,F10.6)') ' <Sz> = ',Sz
write(*,'(A40,1X,F10.6)') ' <S^2> = ',Sx2+Sy2+Sz2
write(*,'(A60)') '---------------------------------------------'
write(*,'(A45)') ' Dipole moment (Debye) '
write(*,'(19X,4A10)') 'X','Y','Z','Tot.'
write(*,'(19X,4F10.4)') (dipole(ixyz)*auToD,ixyz=1,ncart),norm2(dipole)*auToD
write(*,'(A60)') '---------------------------------------------'
write(*,*)
! Print results
if(dump_orb) then
write(*,'(A40)') '-----------------------------------------'
write(*,'(A40)') 'UHF spin-up orbital coefficients '
write(*,'(A40)') '-----------------------------------------'
call matout(nBas,nBas,c(:,:,1))
write(*,*)
write(*,'(A40)') '-----------------------------------------'
write(*,'(A40)') 'UHF spin-down orbital coefficients '
write(*,'(A40)') '-----------------------------------------'
call matout(nBas,nBas,c(:,:,2))
write(*,*)
end if
write(*,'(A40)') '---------------------------------------'
write(*,'(A40)') ' UHF spin-up orbital energies '
write(*,'(A40)') '---------------------------------------'
call vecout(nBas,eHF(:,1))
write(*,*)
write(*,'(A40)') '---------------------------------------'
write(*,'(A40)') ' UHF spin-down orbital energies '
write(*,'(A40)') '---------------------------------------'
call vecout(nBas,eHF(:,2))
write(*,*)
allocate(qa(nBas),qb(nBas))
qa(:) = 0d0
qb(:) = 0d0
do mu=1,nBas
do nu=1,nBas
qa(mu) = qa(mu) + P(mu,nu,1)*S(nu,mu)
qb(mu) = qb(mu) + P(mu,nu,2)*S(nu,mu)
end do
end do
call vecout(nBas,qa)
call vecout(nBas,qb)
end subroutine