10
1
mirror of https://github.com/pfloos/quack synced 2025-01-10 21:18:23 +01:00
QuAcK/src/GW/print_qsGGW.f90

192 lines
7.2 KiB
Fortran

subroutine print_qsGGW(nBas,nBas2,nO,nSCF,Conv,thresh,eHF,eGW,c,S,SigC,Z,ENuc,ET,EV,EJ,Ex,EcGM,EcRPA,EqsGW,dipole)
! Print information for the generalized version of qsGW
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nBas2
integer,intent(in) :: nO
integer,intent(in) :: nSCF
double precision,intent(in) :: ENuc
double precision,intent(in) :: ET
double precision,intent(in) :: EV
double precision,intent(in) :: EJ
double precision,intent(in) :: Ex
double precision,intent(in) :: EcGM
double precision,intent(in) :: EcRPA
double precision,intent(in) :: Conv
double precision,intent(in) :: thresh
double precision,intent(in) :: eHF(nBas2)
double precision,intent(in) :: eGW(nBas2)
double precision,intent(in) :: c(nBas2,nBas2)
double precision,intent(in) :: S(nBas,nBas)
double precision,intent(in) :: SigC(nBas2,nBas2)
double precision,intent(in) :: Z(nBas2)
double precision,intent(in) :: EqsGW
double precision,intent(in) :: dipole(ncart)
! Local variables
logical :: dump_orb = .false.
integer :: i,j
integer :: p,ixyz,HOMO,LUMO
double precision :: Gap
double precision,external :: trace_matrix
double precision :: Sx,Sy,Sz
double precision :: SmSp,SpSm,Sz2,S2
double precision,allocatable :: Ca(:,:)
double precision,allocatable :: Cb(:,:)
double precision,allocatable :: Paa(:,:)
double precision,allocatable :: Pab(:,:)
double precision,allocatable :: Pba(:,:)
double precision,allocatable :: Pbb(:,:)
! Output variables
! HOMO and LUMO
HOMO = nO
LUMO = HOMO + 1
Gap = eGW(LUMO)-eGW(HOMO)
! Density matrices
allocate(Paa(nO,nO),Pab(nO,nO),Pba(nO,nO),Pbb(nO,nO))
allocate(Ca(nBas,nO),Cb(nBas,nO))
Ca(:,:) = C( 1:nBas ,1:nO)
Cb(:,:) = C(nBas+1:nBas2,1:nO)
Paa = matmul(transpose(Ca),matmul(S,Ca))
Pab = matmul(transpose(Ca),matmul(S,Cb))
Pba = matmul(transpose(Cb),matmul(S,Ca))
Pbb = matmul(transpose(Cb),matmul(S,Cb))
! Compute components of S = (Sx,Sy,Sz)
Sx = 0.5d0*(trace_matrix(nO,Pab) + trace_matrix(nO,Pba))
Sy = 0.5d0*(trace_matrix(nO,Pab) - trace_matrix(nO,Pba))
Sz = 0.5d0*(trace_matrix(nO,Paa) - trace_matrix(nO,Pbb))
! Compute <S^2> = <Sx^2> + <Sy^2> + <Sz^2>
SpSm = 0d0
do i=1,nO
do j=1,nO
SpSm = SpSm + Pab(i,i)*Pba(j,j) - Pab(i,j)*Pba(j,i)
end do
end do
SpSm = trace_matrix(nO,Paa) + SpSm
SmSp = 0d0
do i=1,nO
do j=1,nO
SmSp = SmSp + Pba(i,i)*Pab(j,j) - Pba(i,j)*Pab(j,i)
end do
end do
SmSp = trace_matrix(nO,Pbb) + SmSp
Sz2 = 0d0
do i=1,nO
do j=1,nO
Sz2 = Sz2 + (Paa(i,i) - Pbb(i,i))*(Paa(j,j) - Pbb(j,j)) - (Paa(i,j) - Pbb(i,j))**2
end do
end do
Sz2 = 0.25d0*(dble(nO) + Sz2)
! Compute <S^2> from Sz^2, S^+S^- and S^-S^+
S2 = Sz2 + 0.5d0*(SpSm + SmSp)
call print_GHF_spin(nBas,nBas2,nO,C,S)
! Dump results
write(*,*)'-------------------------------------------------------------------------------'
if(nSCF < 10) then
write(*,'(1X,A20,I1,A1,I1,A16)')' Self-consistent qsG',nSCF,'W',nSCF,'@GHF calculation'
elseif(nSCF < 100) then
write(*,'(1X,A20,I2,A1,I2,A16)')' Self-consistent qsG',nSCF,'W',nSCF,'@GHF calculation'
else
write(*,'(1X,A20,I3,A1,I3,A16)')' Self-consistent qsG',nSCF,'W',nSCF,'@GHF calculation'
end if
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(1X,A1,1X,A3,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X)') &
'|','#','|','e_HF (eV)','|','Sig_GW (eV)','|','Z','|','e_GW (eV)','|'
write(*,*)'-------------------------------------------------------------------------------'
do p=1,nBas
write(*,'(1X,A1,1X,I3,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X)') &
'|',p,'|',eHF(p)*HaToeV,'|',SigC(p,p)*HaToeV,'|',Z(p),'|',eGW(p)*HaToeV,'|'
end do
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A10,I3)') 'Iteration ',nSCF
write(*,'(2X,A14,F15.5)')'Convergence = ',Conv
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A60,F15.6,A3)') 'qsGW@GHF HOMO energy = ',eGW(HOMO)*HaToeV,' eV'
write(*,'(2X,A60,F15.6,A3)') 'qsGW@GHF LUMO energy = ',eGW(LUMO)*HaToeV,' eV'
write(*,'(2X,A60,F15.6,A3)') 'qsGW@GHF HOMO-LUMO gap = ',Gap*HaToeV,' eV'
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A60,F15.6,A3)') ' qsGW@GHF total energy = ',ENuc + EqsGW,' au'
write(*,'(2X,A60,F15.6,A3)') ' qsGW@GHF exchange energy = ',Ex,' au'
write(*,'(2X,A60,F15.6,A3)') ' GM@qsGW@GHF correlation energy = ',EcGM,' au'
write(*,'(2X,A60,F15.6,A3)') 'phRPA@qsGW@GHF correlation energy = ',EcRPA,' au'
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
! Dump results for final iteration
if(Conv < thresh) then
write(*,*)
write(*,'(A50)') '---------------------------------------'
write(*,'(A33)') ' Summary '
write(*,'(A50)') '---------------------------------------'
write(*,'(A33,1X,F16.10,A3)') ' One-electron energy = ',ET + EV,' au'
write(*,'(A33,1X,F16.10,A3)') ' Kinetic energy = ',ET,' au'
write(*,'(A33,1X,F16.10,A3)') ' Potential energy = ',EV,' au'
write(*,'(A50)') '---------------------------------------'
write(*,'(A33,1X,F16.10,A3)') ' Two-electron energy = ',EJ + Ex,' au'
write(*,'(A33,1X,F16.10,A3)') ' Hartree energy = ',EJ,' au'
write(*,'(A33,1X,F16.10,A3)') ' Exchange energy = ',Ex,' au'
write(*,'(A33,1X,F16.10,A3)') ' Correlation energy = ',EcGM,' au'
write(*,'(A50)') '---------------------------------------'
write(*,'(A33,1X,F16.10,A3)') ' Electronic energy = ',EqsGW,' au'
write(*,'(A33,1X,F16.10,A3)') ' Nuclear repulsion = ',ENuc,' au'
write(*,'(A33,1X,F16.10,A3)') ' qsGGW energy = ',ENuc + EqsGW,' au'
write(*,'(A50)') '---------------------------------------'
write(*,'(A36)') ' Dipole moment (Debye) '
write(*,'(10X,4A10)') 'X','Y','Z','Tot.'
write(*,'(10X,4F10.4)') (dipole(ixyz)*auToD,ixyz=1,ncart),norm2(dipole)*auToD
write(*,'(A50)') '-----------------------------------------'
write(*,*)
if(dump_orb) then
write(*,'(A50)') '---------------------------------------'
write(*,'(A32)') ' Generalized qsGW orbital coefficients '
write(*,'(A50)') '---------------------------------------'
call matout(nBas,nBas,c)
write(*,*)
end if
write(*,'(A50)') '---------------------------------------'
write(*,'(A32)') ' Generalized qsGW orbital energies (au)'
write(*,'(A50)') '---------------------------------------'
call vecout(nBas,eGW)
write(*,*)
end if
end subroutine