10
1
mirror of https://github.com/pfloos/quack synced 2024-12-25 22:03:44 +01:00
QuAcK/src/MBPT/G0T0.f90

276 lines
9.7 KiB
Fortran

subroutine G0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn,singlet,triplet, &
linearize,eta,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_AO,ERI_MO,dipole_int,PHF,cHF,eHF,Vxc,eG0T0)
! Perform one-shot calculation with a T-matrix self-energy (G0T0)
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: doXBS
logical,intent(in) :: BSE
logical,intent(in) :: TDA_T
logical,intent(in) :: TDA
logical,intent(in) :: dBSE
logical,intent(in) :: dTDA
logical,intent(in) :: evDyn
logical,intent(in) :: singlet
logical,intent(in) :: triplet
logical,intent(in) :: linearize
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: Vxc(nBas)
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: cHF(nBas,nBas)
double precision,intent(in) :: PHF(nBas,nBas)
double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI_MO(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
! Local variables
integer :: ispin
integer :: iblock
integer :: nOOs,nOOt
integer :: nVVs,nVVt
double precision :: dERI
double precision :: xERI
double precision :: alpha
double precision :: EcRPA(nspin)
double precision :: EcBSE(nspin)
double precision :: EcAC(nspin)
double precision,allocatable :: Omega1s(:),Omega1t(:)
double precision,allocatable :: X1s(:,:),X1t(:,:)
double precision,allocatable :: Y1s(:,:),Y1t(:,:)
double precision,allocatable :: rho1s(:,:,:),rho1t(:,:,:)
double precision,allocatable :: Omega2s(:),Omega2t(:)
double precision,allocatable :: X2s(:,:),X2t(:,:)
double precision,allocatable :: Y2s(:,:),Y2t(:,:)
double precision,allocatable :: rho2s(:,:,:),rho2t(:,:,:)
double precision,allocatable :: SigX(:)
double precision,allocatable :: SigT(:)
double precision,allocatable :: Z(:)
double precision,allocatable :: Omega(:,:)
double precision,allocatable :: XpY(:,:,:)
double precision,allocatable :: XmY(:,:,:)
double precision,allocatable :: rho(:,:,:,:)
! Output variables
double precision,intent(out) :: eG0T0(nBas)
! Hello world
write(*,*)
write(*,*)'************************************************'
write(*,*)'| One-shot G0T0 calculation |'
write(*,*)'************************************************'
write(*,*)
! Dimensions of the pp-RPA linear reponse matrices
nOOs = nO*nO
nVVs = nV*nV
nOOt = nO*(nO - 1)/2
nVVt = nV*(nV - 1)/2
! Memory allocation
allocate(Omega1s(nVVs),X1s(nVVs,nVVs),Y1s(nOOs,nVVs), &
Omega2s(nOOs),X2s(nVVs,nOOs),Y2s(nOOs,nOOs), &
rho1s(nBas,nBas,nVVs),rho2s(nBas,nBas,nOOs), &
Omega1t(nVVt),X1t(nVVt,nVVt),Y1t(nOOt,nVVt), &
Omega2t(nOOt),X2t(nVVt,nOOt),Y2t(nOOt,nOOt), &
rho1t(nBas,nBas,nVVt),rho2t(nBas,nBas,nOOt), &
SigX(nBas),SigT(nBas),Z(nBas))
!----------------------------------------------
! alpha-beta block
!----------------------------------------------
ispin = 1
iblock = 3
! Compute linear response
call linear_response_pp(iblock,.true.,.false.,nBas,nC,nO,nV,nR,nOOs,nVVs,eHF(:),ERI_MO(:,:,:,:), &
Omega1s(:),X1s(:,:),Y1s(:,:),Omega2s(:),X2s(:,:),Y2s(:,:),EcRPA(ispin))
! EcRPA(ispin) = 1d0*EcRPA(ispin)
! call print_excitation('pp-RPA (N+2)',iblock,nVVs,Omega1s(:))
! call print_excitation('pp-RPA (N-2)',iblock,nOOs,Omega2s(:))
!----------------------------------------------
! alpha-alpha block
!----------------------------------------------
ispin = 2
iblock = 4
! Compute linear response
call linear_response_pp(iblock,.true.,.false.,nBas,nC,nO,nV,nR,nOOt,nVVt,eHF(:),ERI_MO(:,:,:,:), &
Omega1t(:),X1t(:,:),Y1t(:,:),Omega2t(:),X2t(:,:),Y2t(:,:),EcRPA(ispin))
! EcRPA(ispin) = 2d0*EcRPA(ispin)
! EcRPA(ispin) = 3d0*EcRPA(ispin)
! call print_excitation('pp-RPA (N+2)',iblock,nVVt,Omega1t(:))
! call print_excitation('pp-RPA (N-2)',iblock,nOOt,Omega2t(:))
!----------------------------------------------
! Compute T-matrix version of the self-energy
!----------------------------------------------
SigT(:) = 0d0
Z(:) = 0d0
iblock = 3
dERI = +1d0
xERI = +0d0
alpha = +1d0
call excitation_density_Tmatrix(iblock,dERI,xERI,nBas,nC,nO,nV,nR,nOOs,nVVs,ERI_MO(:,:,:,:), &
X1s(:,:),Y1s(:,:),rho1s(:,:,:),X2s(:,:),Y2s(:,:),rho2s(:,:,:))
call self_energy_Tmatrix_diag(alpha,eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eHF(:), &
Omega1s(:),rho1s(:,:,:),Omega2s(:),rho2s(:,:,:),SigT(:))
call renormalization_factor_Tmatrix(alpha,eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eHF(:), &
Omega1s(:),rho1s(:,:,:),Omega2s(:),rho2s(:,:,:),Z(:))
iblock = 4
dERI = +1d0
xERI = -1d0
alpha = +1d0
call excitation_density_Tmatrix(iblock,dERI,xERI,nBas,nC,nO,nV,nR,nOOt,nVVt,ERI_MO(:,:,:,:), &
X1t(:,:),Y1t(:,:),rho1t(:,:,:),X2t(:,:),Y2t(:,:),rho2t(:,:,:))
call self_energy_Tmatrix_diag(alpha,eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eHF(:), &
Omega1t(:),rho1t(:,:,:),Omega2t(:),rho2t(:,:,:),SigT(:))
call renormalization_factor_Tmatrix(alpha,eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eHF(:), &
Omega1t(:),rho1t(:,:,:),Omega2t(:),rho2t(:,:,:),Z(:))
Z(:) = 1d0/(1d0 - Z(:))
!----------------------------------------------
! Compute the exchange part of the self-energy
!----------------------------------------------
call self_energy_exchange_diag(nBas,cHF,PHF,ERI_AO,SigX)
!----------------------------------------------
! Solve the quasi-particle equation
!----------------------------------------------
if(linearize) then
eG0T0(:) = eHF(:) + Z(:)*(SigX(:) + SigT(:) - Vxc(:))
else
eG0T0(:) = eHF(:) + SigX(:) + SigT(:) - Vxc(:)
end if
!----------------------------------------------
! Dump results
!----------------------------------------------
! Compute the ppRPA correlation energy
ispin = 1
iblock = 3
call linear_response_pp(iblock,.false.,.false.,nBas,nC,nO,nV,nR,nOOs,nVVs,eG0T0(:),ERI_MO(:,:,:,:), &
Omega1s(:),X1s(:,:),Y1s(:,:),Omega2s(:),X2s(:,:),Y2s(:,:),EcRPA(ispin))
ispin = 2
iblock = 4
call linear_response_pp(iblock,.false.,.false.,nBas,nC,nO,nV,nR,nOOt,nVVt,eG0T0(:),ERI_MO(:,:,:,:), &
Omega1t(:),X1t(:,:),Y1t(:,:),Omega2t(:),X2t(:,:),Y2t(:,:),EcRPA(ispin))
EcRPA(1) = EcRPA(1) - EcRPA(2)
EcRPA(2) = 3d0*EcRPA(2)
call print_G0T0(nBas,nO,eHF(:),ENuc,ERHF,SigT(:),Z(:),eG0T0(:),EcRPA(:))
! Perform BSE calculation
if(BSE) then
call Bethe_Salpeter_Tmatrix(TDA_T,TDA,dBSE,dTDA,evDyn,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,nOOt,nVVt, &
Omega1s,X1s,Y1s,Omega2s,X2s,Y2s,rho1s,rho2s,Omega1t,X1t,Y1t,Omega2t,X2t,Y2t,rho1t,rho2t, &
ERI_MO,dipole_int,eHF,eG0T0,EcBSE)
if(exchange_kernel) then
EcRPA(1) = 0.5d0*EcRPA(1)
EcRPA(2) = 1.5d0*EcRPA(1)
end if
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@G0T0 correlation energy (singlet) =',EcBSE(1),' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@G0T0 correlation energy (triplet) =',EcBSE(2),' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@G0T0 correlation energy =',EcBSE(1) + EcBSE(2),' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@G0T0 total energy =',ENuc + ERHF + EcBSE(1) + EcBSE(2),' au'
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
! Compute the BSE correlation energy via the adiabatic connection
if(doACFDT) then
write(*,*) '------------------------------------------------------'
write(*,*) 'Adiabatic connection version of BSE correlation energy'
write(*,*) '------------------------------------------------------'
write(*,*)
if(doXBS) then
write(*,*) '*** scaled screening version (XBS) ***'
write(*,*)
end if
call ACFDT(exchange_kernel,doXBS,.true.,TDA_T,TDA,BSE,singlet,triplet,eta, &
nBas,nC,nO,nV,nR,nS,ERI_MO,eHF,eG0T0,EcAC)
if(exchange_kernel) then
EcAC(1) = 0.5d0*EcAC(1)
EcAC(2) = 1.5d0*EcAC(1)
end if
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@G0T0 correlation energy (singlet) =',EcAC(1),' au'
write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@G0T0 correlation energy (triplet) =',EcAC(2),' au'
write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@G0T0 correlation energy =',EcAC(1) + EcAC(2),' au'
write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@G0T0 total energy =',ENuc + ERHF + EcAC(1) + EcAC(2),' au'
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
end if
end if
end subroutine G0T0