10
1
mirror of https://github.com/pfloos/quack synced 2025-04-02 06:51:37 +02:00
QuAcK/src/CC/EE_EOM_CCD_1h1p.f90
2025-02-22 21:48:55 +01:00

284 lines
5.6 KiB
Fortran

subroutine EE_EOM_CCD_1h1p(nC,nO,nV,nR,eO,eV,OOVV,OVVO,t)
! EE-EOM-CCD calculation up to 1h1p
implicit none
! Input variables
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
double precision,intent(in) :: eO(nO)
double precision,intent(in) :: eV(nV)
double precision,intent(in) :: OOVV(nO,nO,nV,nV)
double precision,intent(in) :: OVVO(nO,nV,nV,nO)
double precision,intent(in) :: t(nO,nO,nV,nV)
! Local variables
integer :: a,b,c,d
integer :: i,j,k,l
integer :: ia,jb
integer :: nS
double precision,external :: Kronecker_delta
double precision,allocatable :: Fvv(:,:)
double precision,allocatable :: Foo(:,:)
double precision,allocatable :: Wovvo(:,:,:,:)
double precision,allocatable :: H(:,:)
double precision,allocatable :: Om(:)
double precision,allocatable :: VL(:,:)
double precision,allocatable :: VR(:,:)
! double precision,allocatable :: Leom(:,:,:)
! double precision,allocatable :: Reom(:,:,:)
! integer :: nstate,m
! double precision :: Ex,tmp
integer,allocatable :: order(:)
! double precision,allocatable :: rdm1_oo(:,:)
! double precision,allocatable :: rdm1_vv(:,:)
! double precision,allocatable :: rdm2_oovv(:,:,:,:)
! double precision,allocatable :: rdm2_ovvo(:,:,:,:)
! Hello world
write(*,*)
write(*,*)'*********************'
write(*,*)'| EE-EOM-CCD (1h1p) |'
write(*,*)'*********************'
write(*,*)
! Size of the EOM Hamiltonian
nS = (nO-nC)*(nV-nR)
! Memory allocation
allocate(Foo(nO,nO),Fvv(nV,nV),Wovvo(nO,nV,nV,nO),H(nS,nS),Om(nS))
allocate(order(nS))
! Form one-body terms
do a=1,nV-nR
do b=1,nV-nR
Fvv(a,b) = eV(a)*Kronecker_delta(a,b)
do i=1,nO-nC
do j=1,nO-nC
do c=1,nV-nR
! Fvv(a,b) = Fvv(a,b) - 0.5d0*OOVV(i,j,b,c)*t(i,j,a,c)
end do
end do
end do
end do
end do
do i=1,nO-nC
do j=1,nO-nC
Foo(i,j) = eO(i)*Kronecker_delta(i,j)
do k=1,nO-nC
do a=1,nV-nR
do b=1,nV-nR
! Foo(i,j) = Foo(i,j) + 0.5d0*OOVV(i,k,a,b)*t(j,k,a,b)
end do
end do
end do
end do
end do
! Form two-body terms
do i=1,nO-nC
do b=1,nV-nR
do a=1,nV-nR
do j=1,nO-nC
Wovvo(i,b,a,j) = OVVO(i,b,a,j)
do k=1,nO-nC
do c=1,nV-nR
Wovvo(i,b,a,j) = Wovvo(i,b,a,j) + OOVV(i,k,a,c)*t(k,j,c,b)
end do
end do
end do
end do
end do
end do
! Form EOM Hamiltonian
ia = 0
do i=1,nO-nC
do a=1,nV-nR
ia = ia + 1
jb = 0
do j=1,nO-nC
do b=1,nV-nR
jb = jb + 1
H(ia,jb) = Fvv(a,b)*Kronecker_delta(i,j) - Kronecker_delta(a,b)*Foo(i,j) + Wovvo(i,b,a,j)
end do
end do
end do
end do
! Diagonalize EOM Hamiltonian
allocate(VL(nS,nS),VR(nS,nS))
if(nS > 0) then
call diagonalize_general_matrix_LR(nS,H,Om,VL,VR)
do ia=1,nS
order(ia) = ia
end do
call quick_sort(Om,order,nS)
call set_order_LR(VL,VR,order,nS,nS)
call print_excitation_energies('EE-EOM-CCD','spinorbital',nS,Om)
! write(*,*) 'Right Eigenvectors'
! call matout(nS,nS,VR)
! call matout(nS,3,VR(:,1:3))
end if
! allocate(Leom(nO,nV,nS),Reom(nO,nV,nS))
! do m=1,nS
! ia = 0
! do i=1,nO
! do a=1,nV
! ia = ia + 1
! Leom(i,a,m) = VL(ia,m)
! Reom(i,a,m) = VR(ia,m)
! end do
! end do
! end do
! deallocate(VL,VR)
!------------------------------------------------------------------------
! EOM section
!------------------------------------------------------------------------
! allocate(rdm1_oo(nO,nO),rdm1_vv(nV,nV))
! allocate(rdm2_oovv(nO,nO,nV,nV),rdm2_ovvo(nO,nV,nV,nO))
! nstate = 1
! tmp = 0d0
! do i=1,nO
! do a=1,nV
! tmp = tmp + Leom(i,a,nstate)*Reom(i,a,nstate)
! end do
! end do
! print*,tmp
! rdm1_oo(:,:) = 0d0
! do i=1,nO
! do j=1,nO
! do c=1,nV
! rdm1_oo(i,j) = rdm1_oo(i,j) - Reom(i,c,nstate)*Leom(j,c,nstate)
! end do
! end do
! end do
! rdm1_vv(:,:) = 0d0
! do a=1,nV
! do b=1,nV
! do k=1,nO
! rdm1_vv(a,b) = rdm1_vv(a,b) + Reom(k,b,nstate)*Leom(k,a,nstate)
! end do
! end do
! end do
! rdm2_ovvo(:,:,:,:) = 0d0
! do i=1,nO
! do a=1,nV
! do b=1,nV
! do j=1,nO
!
! rdm2_ovvo(i,a,b,j) = Reom(i,b,nstate)*Leom(j,a,nstate)
! end do
! end do
! end do
! end do
! rdm2_oovv(:,:,:,:) = 0d0
! do i=1,nO
! do j=1,nO
! do a=1,nV
! do b=1,nV
! do k=1,nO
! do c=1,nV
!
! rdm2_oovv(i,j,a,b) = rdm2_oovv(i,j,a,b) &
! + Reom(j,b,nstate)*t(k,i,c,a)*Leom(k,c,nstate) &
! - Reom(i,b,nstate)*t(k,j,c,a)*Leom(k,c,nstate) &
! - Reom(j,a,nstate)*t(k,i,c,b)*Leom(k,c,nstate) &
! + Reom(i,a,nstate)*t(k,j,c,b)*Leom(k,c,nstate)
! end do
! end do
! end do
! end do
! end do
! end do
! Ex = 0d0
! do i=1,nO
! Ex = Ex + rdm1_oo(i,i)*eO(i)
! end do
! do a=1,nV
! Ex = Ex + rdm1_vv(a,a)*eV(a)
! end do
! do i=1,nO
! do a=1,nV
! do b=1,nV
! do j=1,nO
!
! Ex = Ex + rdm2_ovvo(i,a,b,j)*OVVO(i,a,b,j) + 0.25d0*rdm2_oovv(i,j,a,b)*OOVV(i,j,a,b)
!
! end do
! end do
! end do
! end do
! print*,'Ex = ',Ex
! print*,'Om = ',Om(nstate)
end subroutine