subroutine GGF2_phBSE_static_kernel_A(eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,eGF,KA_sta) ! Compute the resonant part of the static BSE@GF2 matrix implicit none include 'parameters.h' ! Input variables integer,intent(in) :: nBas,nC,nO,nV,nR,nS double precision,intent(in) :: eta double precision,intent(in) :: lambda double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas) double precision,intent(in) :: eGF(nBas) ! Local variables double precision :: dem,num integer :: i,j,k,l integer :: a,b,c,d integer :: ia,jb ! Output variables double precision,intent(out) :: KA_sta(nS,nS) ! Initialization KA_sta(:,:) = 0d0 ! Second-order correlation kernel for the block A of the spinorbital manifold jb = 0 !$omp parallel do default(private) shared(KA_sta,ERI,num,dem,eGF,nO,nBas,eta,nC,nR) do j=nC+1,nO do b=nO+1,nBas-nR jb = (b-nO) + (j-1)*(nBas-nO) ia = 0 do i=nC+1,nO do a=nO+1,nBas-nR ia = (a-nO) + (i-1)*(nBas-nO) do k=nC+1,nO do c=nO+1,nBas-nR dem = - (eGF(c) - eGF(k)) num = ERI(j,k,i,c)*ERI(a,c,b,k) - ERI(j,k,i,c)*ERI(a,c,k,b) & - ERI(j,k,c,i)*ERI(a,c,b,k) + ERI(j,k,c,i)*ERI(a,c,k,b) KA_sta(ia,jb) = KA_sta(ia,jb) - num*dem/(dem**2 + eta**2) dem = + (eGF(c) - eGF(k)) num = ERI(j,c,i,k)*ERI(a,k,b,c) - ERI(j,c,i,k)*ERI(a,k,c,b) & - ERI(j,c,k,i)*ERI(a,k,b,c) + ERI(j,c,k,i)*ERI(a,k,c,b) KA_sta(ia,jb) = KA_sta(ia,jb) + num*dem/(dem**2 + eta**2) end do end do do c=nO+1,nBas-nR do d=nO+1,nBas-nR dem = - (eGF(c) + eGF(d)) num = ERI(a,j,c,d)*ERI(c,d,i,b) - ERI(a,j,c,d)*ERI(c,d,b,i) & - ERI(a,j,d,c)*ERI(c,d,i,b) + ERI(a,j,d,c)*ERI(c,d,b,i) KA_sta(ia,jb) = KA_sta(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2) end do end do do k=nC+1,nO do l=nC+1,nO dem = - (eGF(k) + eGF(l)) num = ERI(a,j,k,l)*ERI(k,l,i,b) - ERI(a,j,k,l)*ERI(k,l,b,i) & - ERI(a,j,l,k)*ERI(k,l,i,b) + ERI(a,j,l,k)*ERI(k,l,b,i) KA_sta(ia,jb) = KA_sta(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2) end do end do end do end do end do end do !$omp end parallel do end subroutine