subroutine evUGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,BSE,TDA_W,TDA,dBSE,dTDA, & spin_conserved,spin_flip,linearize,eta,doSRG,nBas,nC,nO,nV,nR,nS,ENuc, & EUHF,S,ERI_aaaa,ERI_aabb,ERI_bbbb,dipole_int_aa,dipole_int_bb,cHF,eHF) ! Perform self-consistent eigenvalue-only GW calculation implicit none include 'parameters.h' ! Input variables logical,intent(in) :: dotest integer,intent(in) :: maxSCF integer,intent(in) :: max_diis double precision,intent(in) :: thresh double precision,intent(in) :: ENuc double precision,intent(in) :: EUHF logical,intent(in) :: doACFDT logical,intent(in) :: exchange_kernel logical,intent(in) :: doXBS logical,intent(in) :: BSE logical,intent(in) :: TDA_W logical,intent(in) :: TDA logical,intent(in) :: dBSE logical,intent(in) :: dTDA logical,intent(in) :: spin_conserved logical,intent(in) :: spin_flip logical,intent(in) :: linearize double precision,intent(in) :: eta logical,intent(in) :: doSRG integer,intent(in) :: nBas integer,intent(in) :: nC(nspin) integer,intent(in) :: nO(nspin) integer,intent(in) :: nV(nspin) integer,intent(in) :: nR(nspin) integer,intent(in) :: nS(nspin) double precision,intent(in) :: eHF(nBas,nspin) double precision,intent(in) :: cHF(nBas,nBas,nspin) double precision,intent(in) :: S(nBas,nBas) double precision,intent(in) :: ERI_aaaa(nBas,nBas,nBas,nBas) double precision,intent(in) :: ERI_aabb(nBas,nBas,nBas,nBas) double precision,intent(in) :: ERI_bbbb(nBas,nBas,nBas,nBas) double precision,intent(in) :: dipole_int_aa(nBas,nBas,ncart) double precision,intent(in) :: dipole_int_bb(nBas,nBas,ncart) ! Local variables logical :: dRPA logical :: linear_mixing integer :: is integer :: ispin integer :: nSCF integer :: n_diis double precision :: rcond(nspin) double precision :: Conv double precision :: EcRPA(nspin) double precision :: EcGM(nspin) double precision :: EcBSE(nspin) double precision :: alpha double precision,allocatable :: error_diis(:,:,:) double precision,allocatable :: e_diis(:,:,:) double precision,allocatable :: eGW(:,:) double precision,allocatable :: eOld(:,:) double precision,allocatable :: Z(:,:) integer :: nSa,nSb,nSt double precision,allocatable :: SigC(:,:) double precision,allocatable :: Aph(:,:) double precision,allocatable :: Bph(:,:) double precision,allocatable :: Om(:) double precision,allocatable :: XpY(:,:) double precision,allocatable :: XmY(:,:) double precision,allocatable :: rho(:,:,:,:) ! Hello world write(*,*) write(*,*)'*********************************' write(*,*)'| Unrestricted evGW Calculation *' write(*,*)'*********************************' write(*,*) ! TDA for W if(TDA_W) then write(*,*) 'Tamm-Dancoff approximation for dynamic screening!' write(*,*) end if ! SRG regularization if(doSRG) then write(*,*) '*** SRG regularized qsGW scheme ***' write(*,*) end if ! Initialization EcRPA(:) = 0d0 dRPA = .true. ! Linear mixing linear_mixing = .false. alpha = 0.2d0 ! Memory allocation nSa = nS(1) nSb = nS(2) nSt = nSa + nSb allocate(eGW(nBas,nspin),eOld(nBas,nspin),Z(nBas,nspin),SigC(nBas,nspin), & Aph(nSt,nSt),Bph(nSt,nSt),Om(nSt),XpY(nSt,nSt),XmY(nSt,nSt), & rho(nBas,nBas,nSt,nspin),error_diis(nBas,max_diis,nspin),e_diis(nBas,max_diis,nspin)) ! Initialization nSCF = 0 ispin = 1 n_diis = 0 Conv = 1d0 e_diis(:,:,:) = 0d0 error_diis(:,:,:) = 0d0 eGW(:,:) = eHF(:,:) eOld(:,:) = eGW(:,:) Z(:,:) = 1d0 rcond(:) = 0d0 !------------------------------------------------------------------------ ! Main loop !------------------------------------------------------------------------ do while(Conv > thresh .and. nSCF <= maxSCF) ! Compute screening call phULR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nSa,nSb,nSt,1d0,eGW,ERI_aaaa,ERI_aabb,ERI_bbbb,Aph) if(.not.TDA) call phULR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nSa,nSb,nSt,1d0,ERI_aaaa,ERI_aabb,ERI_bbbb,Bph) call phULR(TDA_W,nSa,nSb,nSt,Aph,Bph,EcRPA(ispin),Om,XpY,XmY) !----------------------! ! Excitation densities ! !----------------------! call UGW_excitation_density(nBas,nC,nO,nR,nSa,nSb,nSt,ERI_aaaa,ERI_aabb,ERI_bbbb,XpY,rho) !------------------------------------------------! ! Compute self-energy and renormalization factor ! !------------------------------------------------! if(doSRG) then call UGW_SRG_self_energy_diag(nBas,nC,nO,nV,nR,nSt,eGW,Om,rho,SigC,Z,EcGM) else call UGW_self_energy_diag(eta,nBas,nC,nO,nV,nR,nSt,eGW,Om,rho,SigC,Z,EcGM) end if !-----------------------------------! ! Solve the quasi-particle equation ! !-----------------------------------! if(linearize) then write(*,*) ' *** Quasiparticle energies obtained by linearization *** ' write(*,*) eGW(:,:) = eHF(:,:) + SigC(:,:) else write(*,*) ' *** Quasiparticle energies obtained by root search *** ' write(*,*) do is=1,nspin write(*,*)'-----------------------------------------------------' if(is==1) write(*,*)' Spin-up orbitals ' if(is==2) write(*,*)' Spin-down orbitals ' call UGW_QP_graph(eta,nBas,nC(is),nO(is),nV(is),nR(is),nSt,eHF(:,is), & Om,rho(:,:,:,is),eOld(:,is),eOld(:,is),eGW(:,is),Z(:,is)) end do end if ! Convergence criteria Conv = maxval(abs(eGW(:,:) - eOld(:,:))) ! Print results call print_evUGW(nBas,nO,nSCF,Conv,eHF,ENuc,EUHF,SigC,Z,eGW,EcRPA(ispin),EcGM) ! Linear mixing or DIIS extrapolation if(linear_mixing) then eGW(:,:) = alpha*eGW(:,:) + (1d0 - alpha)*eOld(:,:) else n_diis = min(n_diis+1,max_diis) do is=1,nspin call DIIS_extrapolation(rcond(ispin),nBas,nBas,n_diis,error_diis(:,1:n_diis,is), & e_diis(:,1:n_diis,is),eGW(:,is)-eOld(:,is),eGW(:,is)) end do ! Reset DIIS if required if(minval(rcond(:)) < 1d-15) n_diis = 0 end if ! Save quasiparticles energy for next cycle eOld(:,:) = eGW(:,:) ! Increment nSCF = nSCF + 1 end do !------------------------------------------------------------------------ ! End main loop !------------------------------------------------------------------------ ! Did it actually converge? if(nSCF == maxSCF+1) then write(*,*) write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' write(*,*)' Convergence failed ' write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' write(*,*) stop end if ! Deallocate memory deallocate(eOld,Z,SigC,Om,XpY,XmY,rho,error_diis,e_diis) ! Perform BSE calculation if(BSE) then call UGW_phBSE(TDA_W,TDA,dBSE,dTDA,spin_conserved,spin_flip,eta,nBas,nC,nO,nV,nR,nS, & S,ERI_aaaa,ERI_aabb,ERI_bbbb,dipole_int_aa,dipole_int_bb,cHF,eGW,eGW,EcBSE) if(exchange_kernel) then EcBSE(1) = 0.5d0*EcBSE(1) EcBSE(2) = 0.5d0*EcBSE(2) else EcBSE(2) = 0.0d0 end if write(*,*) write(*,*)'-------------------------------------------------------------------------------' write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@evGW@UHF correlation energy (spin-conserved) =',EcBSE(1),' au' write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@evGW@UHF correlation energy (spin-flip) =',EcBSE(2),' au' write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@evGW@UHF correlation energy =',sum(EcBSE),' au' write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@evGW@UHF total energy =',ENuc + EUHF + sum(EcBSE),' au' write(*,*)'-------------------------------------------------------------------------------' write(*,*) ! Compute the BSE correlation energy via the adiabatic connection if(doACFDT) then write(*,*) '--------------------------------------------------------------' write(*,*) ' Adiabatic connection version of BSE@evUGW correlation energy ' write(*,*) '--------------------------------------------------------------' write(*,*) if(doXBS) then write(*,*) '*** scaled screening version (XBS) ***' write(*,*) end if call UGW_phACFDT(exchange_kernel,doXBS,.true.,TDA_W,TDA,BSE,spin_conserved,spin_flip, & eta,nBas,nC,nO,nV,nR,nS,ERI_aaaa,ERI_aabb,ERI_bbbb,eGW,eGW,EcRPA) write(*,*) write(*,*)'-------------------------------------------------------------------------------' write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@evGW@UHF correlation energy (spin-conserved) =',EcRPA(1),' au' write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@evGW@UHF correlation energy (spin-flip) =',EcRPA(2),' au' write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@evGW@UHF correlation energy =',sum(EcRPA),' au' write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@evGW@UHF total energy =',ENuc + EUHF + sum(EcRPA),' au' write(*,*)'-------------------------------------------------------------------------------' write(*,*) end if end if ! Testing zone if(dotest) then call dump_test_value('U','evGW correlation energy',EcRPA) call dump_test_value('U','evGW HOMOa energy',eGW(nO(1),1)) call dump_test_value('U','evGW LUMOa energy',eGW(nO(1)+1,1)) call dump_test_value('U','evGW HOMOa energy',eGW(nO(2),2)) call dump_test_value('U','evGW LUMOa energy',eGW(nO(2)+1,2)) end if end subroutine