subroutine RGW_self_energy_diag(eta,nBas,nOrb,nC,nO,nV,nR,nS,e,Om,rho,EcGM,Sig,Z) ! Compute diagonal of the correlation part of the self-energy and the renormalization factor implicit none include 'parameters.h' ! Input variables double precision,intent(in) :: eta integer,intent(in) :: nBas integer,intent(in) :: nOrb integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR integer,intent(in) :: nS double precision,intent(in) :: e(nBas) double precision,intent(in) :: Om(nS) double precision,intent(in) :: rho(nBas,nBas,nS) ! Local variables integer :: i,a,p,m double precision :: num,eps ! Output variables double precision,intent(out) :: Sig(nBas) double precision,intent(out) :: Z(nBas) double precision,intent(out) :: EcGM ! Initialize Sig(:) = 0d0 Z(:) = 0d0 !----------------! ! GW self-energy ! !----------------! ! Occupied part of the correlation self-energy do p=nC+1,nBas-nR do i=nC+1,nO do m=1,nS eps = e(p) - e(i) + Om(m) num = 2d0*rho(p,i,m)**2 Sig(p) = Sig(p) + num*eps/(eps**2 + eta**2) Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do end do end do ! Virtual part of the correlation self-energy do p=nC+1,nBas-nR do a=nO+1,nBas-nR do m=1,nS eps = e(p) - e(a) - Om(m) num = 2d0*rho(p,a,m)**2 Sig(p) = Sig(p) + num*eps/(eps**2 + eta**2) Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do end do end do ! Galitskii-Migdal correlation energy EcGM = 0d0 do i=nC+1,nO do a=nO+1,nBas-nR do m=1,nS eps = e(a) - e(i) + Om(m) num = 4d0*rho(a,i,m)**2 EcGM = EcGM - num*eps/(eps**2 + eta**2) end do end do end do ! Compute renormalization factor from derivative Z(:) = 1d0/(1d0 - Z(:)) end subroutine