subroutine ufBSE(nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF,eGW) ! Unfold BSE@GW equations implicit none include 'parameters.h' ! Input variables integer,intent(in) :: nBas integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR integer,intent(in) :: nS double precision,intent(in) :: ENuc double precision,intent(in) :: ERHF double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas) double precision,intent(in) :: eHF(nBas) double precision,intent(in) :: eGW(nBas) ! Local variables integer :: s integer :: i,j,k,l integer :: a,b,c,d integer :: ia,jb,kc,iajb,kcld integer,parameter :: maxH = 20 double precision :: tmp integer :: n1h1p,n2h2p,nH double precision,external :: Kronecker_delta integer,allocatable :: order(:) double precision,allocatable :: H(:,:) double precision,allocatable :: X(:,:) double precision,allocatable :: Om(:) double precision,allocatable :: Z(:) ! Output variables ! Hello world write(*,*) write(*,*)'**********************************************' write(*,*)'| Unfolded BSE@GW calculation |' write(*,*)'**********************************************' write(*,*) ! TDA for W write(*,*) 'Tamm-Dancoff approximation by default!' write(*,*) ! Dimension of the supermatrix n1h1p = nO*nV n2h2p = nO*nO*nV*nV nH = n1h1p + n2h2p + n2h2p ! Memory allocation allocate(order(nH),H(nH,nH),X(nH,nH),Om(nH),Z(nH)) ! Initialization H(:,:) = 0d0 !---------------------------! ! Compute BSE supermatrix ! !---------------------------! ! ! ! | A -Ve -Vh | ! ! | | ! ! H = | +Vh C2h2p 0 | ! ! | | ! ! | +Ve 0 C2p2h | ! ! ! !---------------------------! !---------! ! Block A ! !---------! ia = 0 do i=nC+1,nO do a=nO+1,nBas-nR ia = ia + 1 jb = 0 do j=nC+1,nO do b=nO+1,nBas-nR jb = jb + 1 H(ia,jb) = (eGW(a) - eGW(i))*Kronecker_delta(i,j)*Kronecker_delta(a,b) & + 2d0*ERI(i,b,a,j) - ERI(i,b,j,a) end do end do end do end do !----------------! ! Blocks Vp & Ve ! !----------------! iajb=0 do i=nC+1,nO do a=nO+1,nBas-nR do j=nC+1,nO do b=nO+1,nBas-nR iajb = iajb + 1 kc = 0 do k=nC+1,nO do c=nO+1,nBas-nR kc = kc + 1 tmp = sqrt(2d0)*Kronecker_delta(k,j)*ERI(b,a,c,i) H(n1h1p+iajb,kc ) = +tmp H(kc ,n1h1p+n2h2p+iajb) = -tmp tmp = sqrt(2d0)*Kronecker_delta(b,c)*ERI(a,k,i,j) H(n1h1p+n2h2p+iajb,kc ) = +tmp H(kc ,n1h1p+iajb) = -tmp end do end do end do end do end do end do !-------------! ! Block 2h2p ! !-------------! iajb = 0 do i=nC+1,nO do a=nO+1,nBas-nR do j=nC+1,nO do b=nO+1,nBas-nR iajb = iajb + 1 kcld = 0 do k=nC+1,nO do c=nO+1,nBas-nR do l=nC+1,nO do d=nO+1,nBas-nR kcld = kcld + 1 tmp = ((eHF(a) + eGW(b) - eHF(i) - eGW(j))*Kronecker_delta(i,k)*Kronecker_delta(a,c) & + 2d0*ERI(a,k,i,c))*Kronecker_delta(j,l)*Kronecker_delta(b,d) H(n1h1p +iajb,n1h1p +kcld) = tmp H(n1h1p+n2h2p+iajb,n1h1p+n2h2p+kcld) = tmp end do end do end do end do end do end do end do end do !-------------------------! ! Diagonalize supermatrix ! !-------------------------! ! call matout(nH,nH,H) call diagonalize_general_matrix(nH,H,Om,X) do s=1,nH order(s) = s end do call quick_sort(Om,order,nH) call set_order(X,order,nH,nH) !-----------------! ! Compute weights ! !-----------------! Z(:) = 0d0 do s=1,nH do ia=1,n1h1p Z(s) = Z(s) + X(ia,s)**2 end do end do !--------------! ! Dump results ! !--------------! write(*,*)'-------------------------------------------' write(*,*)' unfolded BSE excitation energies (eV) ' write(*,*)'-------------------------------------------' write(*,'(1X,A1,1X,A3,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X)') & '|','#','|','Omega (eV)','|','Z','|' write(*,*)'-------------------------------------------' do s=1,min(nH,maxH) if(Z(s) > 1d-7) & write(*,'(1X,A1,1X,I3,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X)') & '|',s,'|',Om(s)*HaToeV,'|',Z(s),'|' end do write(*,*)'-------------------------------------------' write(*,*) end subroutine