subroutine GW_ppBSE_dynamic_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,eGW,Om,rho,OmBSE,KC_dyn,ZC_dyn) ! Compute the dynamic part of the Bethe-Salpeter equation matrices implicit none include 'parameters.h' ! Input variables integer,intent(in) :: ispin integer,intent(in) :: nBas integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR integer,intent(in) :: nS integer,intent(in) :: nVV double precision,intent(in) :: eta double precision,intent(in) :: lambda double precision,intent(in) :: eGW(nBas) double precision,intent(in) :: Om(nS) double precision,intent(in) :: rho(nBas,nBas,nS) double precision,intent(in) :: OmBSE ! Local variables double precision,external :: Kronecker_delta double precision :: dem,num integer :: m integer :: a,b,c,d integer :: ab,cd ! Output variables double precision,intent(out) :: KC_dyn(nVV,nVV) double precision,intent(out) :: ZC_dyn(nVV,nVV) ! Initialization KC_dyn(:,:) = 0d0 ZC_dyn(:,:) = 0d0 ! Build dynamic A matrix if(ispin == 1) then ab = 0 do a=nO+1,nBas-nR do b=a,nBas-nR ab = ab + 1 cd = 0 do c=nO+1,nBas-nR do d=c,nBas-nR cd = cd + 1 do m=1,nS dem = OmBSE - eGW(c) - Om(m) - eGW(b) num = rho(a,c,m)*rho(b,d,m) KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2) ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 dem = OmBSE - eGW(c) - Om(m) - eGW(a) num = rho(b,c,m)*rho(a,d,m) KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2) ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 dem = OmBSE - eGW(d) - Om(m) - eGW(a) num = rho(a,c,m)*rho(b,d,m) KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2) ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 dem = OmBSE - eGW(d) - Om(m) - eGW(b) num = rho(b,c,m)*rho(a,d,m) KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2) ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 KC_dyn(ab,cd) = 2d0*KC_dyn(ab,cd)/sqrt((1d0 + Kronecker_delta(a,b))*(1d0 + Kronecker_delta(c,d))) ZC_dyn(ab,cd) = 2d0*ZC_dyn(ab,cd)/sqrt((1d0 + Kronecker_delta(a,b))*(1d0 + Kronecker_delta(c,d))) end do end do end do end do end do end if if(ispin == 2) then ab = 0 do a=nO+1,nBas-nR do b=a+1,nBas-nR ab = ab + 1 cd = 0 do c=nO+1,nBas-nR do d=c+1,nBas-nR cd = cd + 1 do m=1,nS dem = OmBSE - eGW(c) - Om(m) - eGW(b) num = rho(a,c,m)*rho(b,d,m) KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2) ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 dem = OmBSE - eGW(c) - Om(m) - eGW(a) num = rho(b,c,m)*rho(a,d,m) KC_dyn(ab,cd) = KC_dyn(ab,cd) - num*dem/(dem**2 + eta**2) ZC_dyn(ab,cd) = ZC_dyn(ab,cd) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 dem = OmBSE - eGW(d) - Om(m) - eGW(a) num = rho(a,c,m)*rho(b,d,m) KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2) ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 dem = OmBSE - eGW(d) - Om(m) - eGW(b) num = rho(b,c,m)*rho(a,d,m) KC_dyn(ab,cd) = KC_dyn(ab,cd) - num*dem/(dem**2 + eta**2) ZC_dyn(ab,cd) = ZC_dyn(ab,cd) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 KC_dyn(ab,cd) = 2d0*KC_dyn(ab,cd) ZC_dyn(ab,cd) = 2d0*ZC_dyn(ab,cd) end do end do end do end do end do end if end subroutine