subroutine GF2_QP_graph(eta,nBas,nC,nO,nV,nR,nS,eHF,ERI,eGF) ! Compute the graphical solution of the GF2 QP equation implicit none include 'parameters.h' ! Input variables double precision,intent(in) :: eta integer,intent(in) :: nBas,nC,nO,nV,nR,nS double precision,intent(in) :: eHF(nBas) double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas) ! Local variables integer :: p integer :: nIt integer,parameter :: maxIt = 64 double precision,parameter :: thresh = 1d-6 double precision,external :: GF2_SigC,GF2_dSigC double precision :: sigC,dsigC double precision :: f,df double precision :: w ! Output variables double precision,intent(out) :: eGF(nBas) ! Run Newton's algorithm to find the root do p=nC+1,nBas-nR write(*,*) '-----------------' write(*,'(A10,I3)') 'Orbital ',p write(*,*) '-----------------' w = eHF(p) nIt = 0 f = 1d0 write(*,'(A3,I3,A1,1X,3F15.9)') 'It.',nIt,':',w*HaToeV,f do while (abs(f) > thresh .and. nIt < maxIt) nIt = nIt + 1 sigC = GF2_SigC(p,w,eta,nBas,nC,nO,nV,nR,nS,eHF,ERI) dsigC = GF2_dSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,eHF,ERI) f = w - eHF(p) - sigC df = 1d0 - dsigC w = w - f/df write(*,'(A3,I3,A1,1X,3F15.9)') 'It.',nIt,':',w*HaToeV,f,sigC end do if(nIt == maxIt) then write(*,*) 'Newton root search has not converged!' else eGF(p) = w write(*,'(A32,F16.10)') 'Quasiparticle energy (eV) ',eGF(p)*HaToeV write(*,*) end if end do end subroutine