subroutine G0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn,singlet,triplet, & linearize,eta,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_AO,ERI_MO,dipole_int,PHF,cHF,eHF,Vxc,eG0T0) ! Perform one-shot calculation with a T-matrix self-energy (G0T0) implicit none include 'parameters.h' ! Input variables logical,intent(in) :: doACFDT logical,intent(in) :: exchange_kernel logical,intent(in) :: doXBS logical,intent(in) :: BSE logical,intent(in) :: TDA_T logical,intent(in) :: TDA logical,intent(in) :: dBSE logical,intent(in) :: dTDA logical,intent(in) :: evDyn logical,intent(in) :: singlet logical,intent(in) :: triplet logical,intent(in) :: linearize double precision,intent(in) :: eta integer,intent(in) :: nBas integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR integer,intent(in) :: nS double precision,intent(in) :: ENuc double precision,intent(in) :: ERHF double precision,intent(in) :: Vxc(nBas) double precision,intent(in) :: eHF(nBas) double precision,intent(in) :: cHF(nBas,nBas) double precision,intent(in) :: PHF(nBas,nBas) double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas) double precision,intent(in) :: ERI_MO(nBas,nBas,nBas,nBas) double precision,intent(in) :: dipole_int(nBas,nBas,ncart) ! Local variables integer :: ispin integer :: iblock integer :: nOOs,nOOt integer :: nVVs,nVVt double precision :: EcRPA(nspin) double precision :: EcBSE(nspin) double precision :: EcAC(nspin) double precision,allocatable :: Omega1s(:),Omega1t(:) double precision,allocatable :: X1s(:,:),X1t(:,:) double precision,allocatable :: Y1s(:,:),Y1t(:,:) double precision,allocatable :: rho1s(:,:,:),rho1t(:,:,:) double precision,allocatable :: Omega2s(:),Omega2t(:) double precision,allocatable :: X2s(:,:),X2t(:,:) double precision,allocatable :: Y2s(:,:),Y2t(:,:) double precision,allocatable :: rho2s(:,:,:),rho2t(:,:,:) double precision,allocatable :: SigX(:) double precision,allocatable :: SigT(:) double precision,allocatable :: Z(:) double precision,allocatable :: Omega(:,:) double precision,allocatable :: XpY(:,:,:) double precision,allocatable :: XmY(:,:,:) double precision,allocatable :: rho(:,:,:,:) ! Output variables double precision,intent(out) :: eG0T0(nBas) ! Hello world write(*,*) write(*,*)'************************************************' write(*,*)'| One-shot G0T0 calculation |' write(*,*)'************************************************' write(*,*) ! Dimensions of the pp-RPA linear reponse matrices nOOs = nO*nO nVVs = nV*nV nOOt = nO*(nO - 1)/2 nVVt = nV*(nV - 1)/2 ! Memory allocation allocate(Omega1s(nVVs),X1s(nVVs,nVVs),Y1s(nOOs,nVVs), & Omega2s(nOOs),X2s(nVVs,nOOs),Y2s(nOOs,nOOs), & rho1s(nBas,nBas,nVVs),rho2s(nBas,nBas,nOOs), & Omega1t(nVVt),X1t(nVVt,nVVt),Y1t(nOOt,nVVt), & Omega2t(nOOt),X2t(nVVt,nOOt),Y2t(nOOt,nOOt), & rho1t(nBas,nBas,nVVt),rho2t(nBas,nBas,nOOt), & SigX(nBas),SigT(nBas),Z(nBas)) !---------------------------------------------- ! alpha-beta block !---------------------------------------------- ispin = 1 iblock = 3 ! Compute linear response call linear_response_pp(iblock,.true.,.false.,nBas,nC,nO,nV,nR,nOOs,nVVs,eHF,ERI_MO, & Omega1s,X1s,Y1s,Omega2s,X2s,Y2s,EcRPA(ispin)) ! EcRPA(ispin) = 1d0*EcRPA(ispin) ! call print_excitation('pp-RPA (N+2)',iblock,nVVs,Omega1s(:)) ! call print_excitation('pp-RPA (N-2)',iblock,nOOs,Omega2s(:)) !---------------------------------------------- ! alpha-alpha block !---------------------------------------------- ispin = 2 iblock = 4 ! Compute linear response call linear_response_pp(iblock,.true.,.false.,nBas,nC,nO,nV,nR,nOOt,nVVt,eHF,ERI_MO, & Omega1t,X1t,Y1t,Omega2t,X2t,Y2t,EcRPA(ispin)) ! EcRPA(ispin) = 2d0*EcRPA(ispin) ! EcRPA(ispin) = 3d0*EcRPA(ispin) ! call print_excitation('pp-RPA (N+2)',iblock,nVVt,Omega1t(:)) ! call print_excitation('pp-RPA (N-2)',iblock,nOOt,Omega2t(:)) !---------------------------------------------- ! Compute T-matrix version of the self-energy !---------------------------------------------- SigT(:) = 0d0 Z(:) = 0d0 iblock = 3 call excitation_density_Tmatrix(iblock,nBas,nC,nO,nV,nR,nOOs,nVVs,ERI_MO,X1s,Y1s,rho1s,X2s,Y2s,rho2s) call self_energy_Tmatrix_diag(eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eHF,Omega1s,rho1s,Omega2s,rho2s,SigT) call renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eHF,Omega1s,rho1s,Omega2s,rho2s,Z) iblock = 4 call excitation_density_Tmatrix(iblock,nBas,nC,nO,nV,nR,nOOt,nVVt,ERI_MO,X1t,Y1t,rho1t,X2t,Y2t,rho2t) call self_energy_Tmatrix_diag(eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eHF,Omega1t,rho1t,Omega2t,rho2t,SigT) call renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eHF,Omega1t,rho1t,Omega2t,rho2t,Z) Z(:) = 1d0/(1d0 - Z(:)) !---------------------------------------------- ! Compute the exchange part of the self-energy !---------------------------------------------- call self_energy_exchange_diag(nBas,cHF,PHF,ERI_AO,SigX) !---------------------------------------------- ! Solve the quasi-particle equation !---------------------------------------------- if(linearize) then eG0T0(:) = eHF(:) + Z(:)*(SigX(:) + SigT(:) - Vxc(:)) else eG0T0(:) = eHF(:) + SigX(:) + SigT(:) - Vxc(:) end if !---------------------------------------------- ! Dump results !---------------------------------------------- ! Compute the ppRPA correlation energy ispin = 1 iblock = 3 call linear_response_pp(iblock,.false.,.false.,nBas,nC,nO,nV,nR,nOOs,nVVs,eG0T0,ERI_MO, & Omega1s,X1s,Y1s,Omega2s,X2s,Y2s,EcRPA(ispin)) ispin = 2 iblock = 4 call linear_response_pp(iblock,.false.,.false.,nBas,nC,nO,nV,nR,nOOt,nVVt,eG0T0,ERI_MO, & Omega1t,X1t,Y1t,Omega2t,X2t,Y2t,EcRPA(ispin)) EcRPA(1) = EcRPA(1) - EcRPA(2) EcRPA(2) = 3d0*EcRPA(2) call print_G0T0(nBas,nO,eHF,ENuc,ERHF,SigT,Z,eG0T0,EcRPA) ! Perform BSE calculation if(BSE) then call Bethe_Salpeter_Tmatrix(TDA_T,TDA,dBSE,dTDA,evDyn,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,nOOt,nVVt, & Omega1s,X1s,Y1s,Omega2s,X2s,Y2s,rho1s,rho2s,Omega1t,X1t,Y1t,Omega2t,X2t,Y2t,rho1t,rho2t, & ERI_MO,dipole_int,eHF,eG0T0,EcBSE) if(exchange_kernel) then EcRPA(1) = 0.5d0*EcRPA(1) EcRPA(2) = 1.5d0*EcRPA(1) end if write(*,*) write(*,*)'-------------------------------------------------------------------------------' write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@G0T0 correlation energy (singlet) =',EcBSE(1),' au' write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@G0T0 correlation energy (triplet) =',EcBSE(2),' au' write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@G0T0 correlation energy =',EcBSE(1) + EcBSE(2),' au' write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@G0T0 total energy =',ENuc + ERHF + EcBSE(1) + EcBSE(2),' au' write(*,*)'-------------------------------------------------------------------------------' write(*,*) ! Compute the BSE correlation energy via the adiabatic connection if(doACFDT) then write(*,*) '------------------------------------------------------' write(*,*) 'Adiabatic connection version of BSE correlation energy' write(*,*) '------------------------------------------------------' write(*,*) if(doXBS) then write(*,*) '*** scaled screening version (XBS) ***' write(*,*) end if call ACFDT(exchange_kernel,doXBS,.true.,TDA_T,TDA,BSE,singlet,triplet,eta, & nBas,nC,nO,nV,nR,nS,ERI_MO,eHF,eG0T0,EcAC) if(exchange_kernel) then EcAC(1) = 0.5d0*EcAC(1) EcAC(2) = 1.5d0*EcAC(1) end if write(*,*) write(*,*)'-------------------------------------------------------------------------------' write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@G0T0 correlation energy (singlet) =',EcAC(1),' au' write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@G0T0 correlation energy (triplet) =',EcAC(2),' au' write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@G0T0 correlation energy =',EcAC(1) + EcAC(2),' au' write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@G0T0 total energy =',ENuc + ERHF + EcAC(1) + EcAC(2),' au' write(*,*)'-------------------------------------------------------------------------------' write(*,*) end if end if end subroutine G0T0