subroutine qsUGW(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,BSE,TDA_W,TDA, & dBSE,dTDA,spin_conserved,spin_flip,eta,regularize,nNuc,ZNuc,rNuc,ENuc,nBas,nC,nO, & nV,nR,nS,EUHF,S,X,T,V,Hc,ERI_AO,ERI_aaaa,ERI_aabb,ERI_bbbb,dipole_int_AO,dipole_int_aa, & dipole_int_bb,PHF,cHF,eHF) ! Perform a quasiparticle self-consistent GW calculation implicit none include 'parameters.h' ! Input variables integer,intent(in) :: maxSCF integer,intent(in) :: max_diis double precision,intent(in) :: thresh logical,intent(in) :: doACFDT logical,intent(in) :: exchange_kernel logical,intent(in) :: doXBS logical,intent(in) :: BSE logical,intent(in) :: TDA_W logical,intent(in) :: TDA logical,intent(in) :: dBSE logical,intent(in) :: dTDA logical,intent(in) :: spin_conserved logical,intent(in) :: spin_flip double precision,intent(in) :: eta logical,intent(in) :: regularize integer,intent(in) :: nNuc double precision,intent(in) :: ZNuc(nNuc) double precision,intent(in) :: rNuc(nNuc,ncart) double precision,intent(in) :: ENuc integer,intent(in) :: nBas integer,intent(in) :: nC(nspin) integer,intent(in) :: nO(nspin) integer,intent(in) :: nV(nspin) integer,intent(in) :: nR(nspin) integer,intent(in) :: nS(nspin) double precision,intent(in) :: EUHF double precision,intent(in) :: eHF(nBas,nspin) double precision,intent(in) :: cHF(nBas,nBas,nspin) double precision,intent(in) :: PHF(nBas,nBas,nspin) double precision,intent(in) :: S(nBas,nBas) double precision,intent(in) :: T(nBas,nBas) double precision,intent(in) :: V(nBas,nBas) double precision,intent(in) :: Hc(nBas,nBas) double precision,intent(in) :: X(nBas,nBas) double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas) double precision,intent(inout):: ERI_aaaa(nBas,nBas,nBas,nBas) double precision,intent(inout):: ERI_aabb(nBas,nBas,nBas,nBas) double precision,intent(inout):: ERI_bbbb(nBas,nBas,nBas,nBas) double precision,intent(in) :: dipole_int_AO(nBas,nBas,ncart) double precision,intent(inout):: dipole_int_aa(nBas,nBas,ncart) double precision,intent(inout):: dipole_int_bb(nBas,nBas,ncart) ! Local variables logical :: dRPA integer :: nSCF integer :: nBasSq integer :: ispin integer :: ixyz integer :: is integer :: n_diis integer :: nS_aa,nS_bb,nS_sc double precision :: dipole(ncart) double precision :: ET(nspin) double precision :: EV(nspin) double precision :: EJ(nsp) double precision :: EK(nspin) double precision :: EcRPA double precision :: EcGM(nspin) double precision :: EqsGW double precision :: EcBSE(nspin) double precision :: EcAC(nspin) double precision :: Conv double precision :: rcond(nspin) double precision,external :: trace_matrix double precision,allocatable :: err_diis(:,:,:) double precision,allocatable :: F_diis(:,:,:) double precision,allocatable :: Om(:) double precision,allocatable :: XpY(:,:) double precision,allocatable :: XmY(:,:) double precision,allocatable :: rho(:,:,:,:) double precision,allocatable :: c(:,:,:) double precision,allocatable :: cp(:,:,:) double precision,allocatable :: eGW(:,:) double precision,allocatable :: P(:,:,:) double precision,allocatable :: F(:,:,:) double precision,allocatable :: Fp(:,:,:) double precision,allocatable :: J(:,:,:) double precision,allocatable :: K(:,:,:) double precision,allocatable :: SigC(:,:,:) double precision,allocatable :: SigCp(:,:,:) double precision,allocatable :: Z(:,:) double precision,allocatable :: err(:,:,:) ! Hello world write(*,*) write(*,*)'*************************************************' write(*,*)'| Self-consistent unrestricted qsGW calculation |' write(*,*)'*************************************************' write(*,*) ! Warning write(*,*) '!! ERIs in MO basis will be overwritten in qsUGW !!' write(*,*) ! Stuff nBasSq = nBas*nBas dRPA = .true. ! TDA for W if(TDA_W) then write(*,*) 'Tamm-Dancoff approximation for dynamic screening!' write(*,*) end if ! TDA if(TDA) then write(*,*) 'Tamm-Dancoff approximation activated!' write(*,*) end if ! Memory allocation nS_aa = nS(1) nS_bb = nS(2) nS_sc = nS_aa + nS_bb allocate(eGW(nBas,nspin),c(nBas,nBas,nspin),cp(nBas,nBas,nspin),P(nBas,nBas,nspin),F(nBas,nBas,nspin), & Fp(nBas,nBas,nspin),J(nBas,nBas,nspin),K(nBas,nBas,nspin),SigC(nBas,nBas,nspin),SigCp(nBas,nBas,nspin), & Z(nBas,nspin),Om(nS_sc),XpY(nS_sc,nS_sc),XmY(nS_sc,nS_sc),rho(nBas,nBas,nS_sc,nspin), & err(nBas,nBas,nspin),err_diis(nBasSq,max_diis,nspin),F_diis(nBasSq,max_diis,nspin)) ! Initialization nSCF = -1 n_diis = 0 ispin = 1 Conv = 1d0 P(:,:,:) = PHF(:,:,:) eGW(:,:) = eHF(:,:) c(:,:,:) = cHF(:,:,:) F_diis(:,:,:) = 0d0 err_diis(:,:,:) = 0d0 rcond(:) = 0d0 !------------------------------------------------------------------------ ! Main loop !------------------------------------------------------------------------ do while(Conv > thresh .and. nSCF < maxSCF) ! Increment nSCF = nSCF + 1 ! Buid Hartree matrix do is=1,nspin call Hartree_matrix_AO_basis(nBas,P(:,:,is),ERI_AO(:,:,:,:),J(:,:,is)) end do ! Compute exchange part of the self-energy do is=1,nspin call exchange_matrix_AO_basis(nBas,P(:,:,is),ERI_AO(:,:,:,:),K(:,:,is)) end do !-------------------------------------------------- ! AO to MO transformation of two-electron integrals !-------------------------------------------------- do ixyz=1,ncart call AOtoMO_transform(nBas,cHF(:,:,1),dipole_int_AO(:,:,ixyz),dipole_int_aa(:,:,ixyz)) call AOtoMO_transform(nBas,cHF(:,:,2),dipole_int_AO(:,:,ixyz),dipole_int_bb(:,:,ixyz)) end do ! 4-index transform for (aa|aa) block call AOtoMO_integral_transform(1,1,1,1,nBas,c,ERI_AO,ERI_aaaa) ! 4-index transform for (aa|bb) block call AOtoMO_integral_transform(1,1,2,2,nBas,c,ERI_AO,ERI_aabb) ! 4-index transform for (bb|bb) block call AOtoMO_integral_transform(2,2,2,2,nBas,c,ERI_AO,ERI_bbbb) ! Compute linear response call phULR(ispin,dRPA,TDA_W,.false.,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sc,nS_sc,1d0, & eGW,ERI_aaaa,ERI_aabb,ERI_bbbb,Om,rho,EcRPA,Om,XpY,XmY) !----------------------! ! Excitation densities ! !----------------------! call UGW_excitation_density(nBas,nC,nO,nR,nS_aa,nS_bb,nS_sc,ERI_aaaa,ERI_aabb,ERI_bbbb,XpY,rho) !------------------------------------------------! ! Compute self-energy and renormalization factor ! !------------------------------------------------! if(regularize) then do is=1,nspin call GW_regularization(nBas,nC(is),nO(is),nV(is),nR(is),nS_sc,eGW(:,is),Om,rho(:,:,:,is)) end do end if call UGW_self_energy(eta,nBas,nC,nO,nV,nR,nS_sc,eGW,Om,rho,SigC,Z,EcGM) ! Make correlation self-energy Hermitian and transform it back to AO basis do is=1,nspin SigC(:,:,is) = 0.5d0*(SigC(:,:,is) + transpose(SigC(:,:,is))) end do do is=1,nspin call MOtoAO_transform(nBas,S,c(:,:,is),SigC(:,:,is),SigCp(:,:,is)) end do ! Solve the quasi-particle equation do is=1,nspin F(:,:,is) = Hc(:,:) + J(:,:,is) + J(:,:,mod(is,2)+1) + K(:,:,is) + SigCp(:,:,is) end do ! Check convergence do is=1,nspin err(:,:,is) = matmul(F(:,:,is),matmul(P(:,:,is),S(:,:))) - matmul(matmul(S(:,:),P(:,:,is)),F(:,:,is)) end do if(nSCF > 1) Conv = maxval(abs(err(:,:,:))) ! DIIS extrapolation n_diis = min(n_diis+1,max_diis) if(minval(rcond(:)) > 1d-7) then do is=1,nspin if(nO(is) > 1) call DIIS_extrapolation(rcond(is),nBasSq,nBasSq,n_diis,err_diis(:,1:n_diis,is), & F_diis(:,1:n_diis,is),err(:,:,is),F(:,:,is)) end do else n_diis = 0 end if ! Transform Fock matrix in orthogonal basis do is=1,nspin Fp(:,:,is) = matmul(transpose(X(:,:)),matmul(F(:,:,is),X(:,:))) end do ! Diagonalize Fock matrix to get eigenvectors and eigenvalues cp(:,:,:) = Fp(:,:,:) do is=1,nspin call diagonalize_matrix(nBas,cp(:,:,is),eGW(:,is)) end do ! Back-transform eigenvectors in non-orthogonal basis do is=1,nspin c(:,:,is) = matmul(X(:,:),cp(:,:,is)) end do ! Back-transform self-energy do is=1,nspin call AOtoMO_transform(nBas,c(:,:,is),SigCp(:,:,is),SigC(:,:,is)) end do ! Compute density matrix do is=1,nspin P(:,:,is) = matmul(c(:,1:nO(is),is),transpose(c(:,1:nO(is),is))) end do !------------------------------------------------------------------------ ! Compute total energy !------------------------------------------------------------------------ ! Kinetic energy do is=1,nspin ET(is) = trace_matrix(nBas,matmul(P(:,:,is),T(:,:))) end do ! Potential energy do is=1,nspin EV(is) = trace_matrix(nBas,matmul(P(:,:,is),V(:,:))) end do ! Hartree energy EJ(1) = 0.5d0*trace_matrix(nBas,matmul(P(:,:,1),J(:,:,1))) EJ(2) = 0.5d0*trace_matrix(nBas,matmul(P(:,:,1),J(:,:,2))) & + 0.5d0*trace_matrix(nBas,matmul(P(:,:,2),J(:,:,1))) EJ(3) = 0.5d0*trace_matrix(nBas,matmul(P(:,:,2),J(:,:,2))) ! Exchange energy do is=1,nspin EK(is) = 0.5d0*trace_matrix(nBas,matmul(P(:,:,is),K(:,:,is))) end do ! Total energy EqsGW = sum(ET(:)) + sum(EV(:)) + sum(EJ(:)) + sum(EK(:)) !------------------------------------------------------------------------ ! Print results !------------------------------------------------------------------------ call dipole_moment(nBas,P(:,:,1)+P(:,:,2),nNuc,ZNuc,rNuc,dipole_int_AO,dipole) call print_qsUGW(nBas,nO,nSCF,Conv,thresh,eHF,eGW,c,S,ENuc,ET,EV,EJ,EK,EcGM,EcRPA,EqsGW,SigCp,Z,dipole) enddo !------------------------------------------------------------------------ ! End main loop !------------------------------------------------------------------------ ! Did it actually converge? if(nSCF == maxSCF) then write(*,*) write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' write(*,*)' Convergence failed ' write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' write(*,*) stop endif ! Deallocate memory deallocate(cp,P,F,Fp,J,K,SigC,SigCp,Z,Om,XpY,XmY,rho,err,err_diis,F_diis) ! Perform BSE calculation if(BSE) then call UGW_phBSE(TDA_W,TDA,dBSE,dTDA,spin_conserved,spin_flip,eta,nBas,nC,nO,nV,nR,nS, & S,ERI_aaaa,ERI_aabb,ERI_bbbb,dipole_int_aa,dipole_int_bb,c,eGW,eGW,EcBSE) if(exchange_kernel) then EcBSE(1) = 0.5d0*EcBSE(1) EcBSE(2) = 0.5d0*EcBSE(2) else EcBSE(2) = 0.0d0 end if write(*,*) write(*,*)'-------------------------------------------------------------------------------' write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsUGW correlation energy (spin-conserved) =',EcBSE(1) write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsUGW correlation energy (spin-flip) =',EcBSE(2) write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsUGW correlation energy =',EcBSE(1) + EcBSE(2) write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsUGW total energy =',ENuc + EqsGW + EcBSE(1) + EcBSE(2) write(*,*)'-------------------------------------------------------------------------------' write(*,*) ! Compute the BSE correlation energy via the adiabatic connection if(doACFDT) then write(*,*) '--------------------------------------------------------------' write(*,*) ' Adiabatic connection version of BSE@qsUGW correlation energy ' write(*,*) '--------------------------------------------------------------' write(*,*) if(doXBS) then write(*,*) '*** scaled screening version (XBS) ***' write(*,*) end if call UGW_phACFDT(exchange_kernel,doXBS,.true.,TDA_W,TDA,BSE,spin_conserved,spin_flip, & eta,nBas,nC,nO,nV,nR,nS,ERI_aaaa,ERI_aabb,ERI_bbbb,eGW,eGW,EcAC) write(*,*) write(*,*)'-------------------------------------------------------------------------------' write(*,'(2X,A50,F20.10)') 'AC@BSE@qsUGW correlation energy (spin-conserved) =',EcAC(1) write(*,'(2X,A50,F20.10)') 'AC@BSE@qsUGW correlation energy (spin-flip) =',EcAC(2) write(*,'(2X,A50,F20.10)') 'AC@BSE@qsUGW correlation energy =',EcAC(1) + EcAC(2) write(*,'(2X,A50,F20.10)') 'AC@BSE@qsUGW total energy =',ENuc + EqsGW + EcAC(1) + EcAC(2) write(*,*)'-------------------------------------------------------------------------------' write(*,*) end if end if end subroutine