subroutine complex_RGW_self_energy(eta,nBas,nOrb,nC,nO,nV,nR,nS,e,Om,rho,EcGM,Sig,Z) ! Compute correlation part of the self-energy and the renormalization factor implicit none include 'parameters.h' ! Input variables double precision,intent(in) :: eta integer,intent(in) :: nBas integer,intent(in) :: nOrb integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR integer,intent(in) :: nS complex*16,intent(in) :: e(nOrb) complex*16,intent(in) :: Om(nS) complex*16,intent(in) :: rho(nOrb,nOrb,nS) ! Local variables integer :: i,j,a,b integer :: p,q,m double precision :: eps,eta_tilde complex*16 :: num,tmp double precision,allocatable :: Re_DS(:) double precision,allocatable :: Im_DS(:) double precision,allocatable :: Re_Sig(:,:) double precision,allocatable :: Im_Sig(:,:) double precision,allocatable :: Re_Z(:) double precision,allocatable :: Im_Z(:) ! Output variables complex*16,intent(out) :: EcGM complex*16,intent(out) :: Sig(nOrb,nOrb) complex*16,intent(out) :: Z(nOrb) !----------------! ! GW self-energy ! !----------------! allocate(Re_DS(nOrb),Im_DS(nOrb),Re_Z(nOrb),Im_Z(nOrb),Re_Sig(nOrb,nOrb),Im_Sig(nOrb,nOrb)) Re_Sig(:,:) = 0d0 Im_Sig(:,:) = 0d0 Re_DS(:) = 0d0 Im_DS(:) = 0d0 ! Occupied part of the correlation self-energy !$OMP PARALLEL & !$OMP SHARED(Re_Sig,Im_Sig,rho,eta,nS,nC,nO,nOrb,nR,e,Om) & !$OMP PRIVATE(m,i,q,p,eps,num,eta_tilde,tmp) & !$OMP DEFAULT(NONE) !$OMP DO do q=nC+1,nOrb-nR do p=nC+1,nOrb-nR do m=1,nS do i=nC+1,nO eps = real(e(p)) - real(e(i)) + real(Om(m)) eta_tilde = eta - aimag(e(p)) + aimag(e(i)) - aimag(Om(m)) num = 2d0*rho(p,i,m)*rho(q,i,m) tmp = num*cmplx(eps/(eps**2 + eta_tilde**2),& eta_tilde/(eps**2+eta_tilde**2),kind=8) Re_Sig(p,q) = Re_Sig(p,q) + real(tmp) Im_Sig(p,q) = Im_Sig(p,q) + aimag(tmp) end do end do end do end do !$OMP END DO !$OMP END PARALLEL ! Virtual part of the correlation self-energy !$OMP PARALLEL & !$OMP SHARED(Re_Sig,Im_Sig,rho,eta,nS,nC,nO,nOrb,nR,e,Om) & !$OMP PRIVATE(m,a,q,p,eps,num,eta_tilde,tmp) & !$OMP DEFAULT(NONE) !$OMP DO do q=nC+1,nOrb-nR do p=nC+1,nOrb-nR do m=1,nS do a=nO+1,nOrb-nR eps = real(e(p)) - real(e(a)) - real(Om(m)) eta_tilde = eta + aimag(e(p)) - aimag(e(a)) - aimag(Om(m)) num = 2d0*rho(p,a,m)*rho(q,a,m) tmp = num*cmplx(eps/(eps**2 + eta_tilde**2),& -eta_tilde/(eps**2 + eta_tilde**2),kind=8) Re_Sig(p,q) = Re_Sig(p,q) + real(tmp) Im_Sig(p,q) = Im_Sig(p,q) + aimag(tmp) end do end do end do end do !$OMP END DO !$OMP END PARALLEL !------------------------! ! Renormalization factor ! !------------------------! ! Occupied part of the renormalization factor !$OMP PARALLEL & !$OMP SHARED(Re_DS,Im_DS,rho,eta,nS,nC,nO,nOrb,nR,e,Om) & !$OMP PRIVATE(m,i,p,eps,num,eta_tilde,tmp) & !$OMP DEFAULT(NONE) !$OMP DO do p=nC+1,nOrb-nR do m=1,nS do i=nC+1,nO eps = real(e(p)) - real(e(i)) + real(Om(m)) eta_tilde = eta - aimag(e(p)) + aimag(e(i)) - aimag(Om(m)) num = 2d0*rho(p,i,m)*rho(p,i,m) tmp = num*cmplx(-(eps**2-eta_tilde**2)/(eps**2 + eta_tilde**2)**2,& -2*eta_tilde*eps/(eps**2 + eta_tilde**2)**2,kind=8) Re_DS(p) = Re_DS(p) + real(tmp) Im_DS(p) = Im_DS(p) + aimag(tmp) end do end do end do !$OMP END DO !$OMP END PARALLEL ! Virtual part of the renormalization factor !$OMP PARALLEL & !$OMP SHARED(Re_DS,Im_DS,rho,eta,nS,nC,nO,nOrb,nR,e,Om) & !$OMP PRIVATE(m,a,p,eps,num,eta_tilde,tmp) & !$OMP DEFAULT(NONE) !$OMP DO do p=nC+1,nOrb-nR do m=1,nS do a=nO+1,nOrb-nR eps = real(e(p)) - real(e(a)) - real(Om(m)) eta_tilde = eta + aimag(e(p)) - aimag(e(a)) - aimag(Om(m)) num = 2d0*rho(p,a,m)*rho(p,a,m) tmp = num*cmplx(-(eps**2 - eta_tilde**2)/(eps**2 + eta_tilde**2)**2,& 2*eta_tilde*eps/eps/(eps**2 + eta_tilde**2)**2,kind=8) Re_DS(p) = Re_DS(p) + real(tmp) Im_DS(p) = Im_DS(p) + aimag(tmp) end do end do end do !$OMP END DO !$OMP END PARALLEL ! Compute renormalization factor from derivative Re_Z(:) = (1d0-Re_DS(:))/((1d0 - Re_DS(:))**2 + Im_DS(:)**2) Im_Z(:) = Im_DS(:)/((1d0 - Re_DS(:))**2 + Im_DS(:)**2) Z = cmplx(Re_Z,Im_Z,kind=8) Sig = cmplx(Re_Sig,Im_Sig,kind=8) deallocate(Re_DS,Im_DS,Re_Z,Im_Z,Re_Sig,Im_Sig) !!-------------------------------------! !! Galitskii-Migdal correlation energy ! !!-------------------------------------! ! ! EcGM = 0d0 ! do m=1,nS ! do a=nO+1,nOrb-nR ! do i=nC+1,nO ! ! eps = e(a) - e(i) + Om(m) ! num = 4d0*rho(a,i,m)*rho(a,i,m) ! EcGM = EcGM - num*eps/(eps**2 + eta**2) ! ! end do ! end do ! end do ! end subroutine