subroutine UGW_self_energy(eta,nBas,nC,nO,nV,nR,nSt,e,Om,rho,Sig,Z,EcGM) ! Compute diagonal of the correlation part of the self-energy implicit none include 'parameters.h' ! Input variables double precision,intent(in) :: eta integer,intent(in) :: nBas integer,intent(in) :: nC(nspin) integer,intent(in) :: nO(nspin) integer,intent(in) :: nV(nspin) integer,intent(in) :: nR(nspin) integer,intent(in) :: nSt double precision,intent(in) :: e(nBas,nspin) double precision,intent(in) :: Om(nSt) double precision,intent(in) :: rho(nBas,nBas,nSt,nspin) ! Local variables integer :: i,a,p,q,m double precision :: num,eps ! Output variables double precision,intent(out) :: Sig(nBas,nBas,nspin) double precision,intent(out) :: Z(nBas,nspin) double precision :: EcGM(nspin) ! Initialize Sig(:,:,:) = 0d0 Z(:,:) = 0d0 EcGM(:) = 0d0 !--------------! ! Spin-up part ! !--------------! ! Occupied part of the correlation self-energy do p=nC(1)+1,nBas-nR(1) do q=nC(1)+1,nBas-nR(1) do i=nC(1)+1,nO(1) do m=1,nSt eps = e(p,1) - e(i,1) + Om(m) num = rho(p,i,m,1)*rho(q,i,m,1) Sig(p,q,1) = Sig(p,q,1) + num*eps/(eps**2 + eta**2) if(p == q) Z(p,1) = Z(p,1) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do end do end do end do ! Virtual part of the correlation self-energy do p=nC(1)+1,nBas-nR(1) do q=nC(1)+1,nBas-nR(1) do a=nO(1)+1,nBas-nR(1) do m=1,nSt eps = e(p,1) - e(a,1) - Om(m) num = rho(p,a,m,1)*rho(q,a,m,1) Sig(p,q,1) = Sig(p,q,1) + num*eps/(eps**2 + eta**2) if(p == q) Z(p,1) = Z(p,1) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do end do end do end do ! GM correlation energy do i=nC(1)+1,nO(1) do a=nO(1)+1,nBas-nR(1) do m=1,nSt eps = e(a,1) - e(i,1) + Om(m) num = rho(a,i,m,1)**2 EcGM(1) = EcGM(1) - num*eps/(eps**2 + eta**2) end do end do end do !----------------! ! Spin-down part ! !----------------! ! Occupied part of the correlation self-energy do p=nC(2)+1,nBas-nR(2) do q=nC(2)+1,nBas-nR(2) do i=nC(2)+1,nO(2) do m=1,nSt eps = e(p,2) - e(i,2) + Om(m) num = rho(p,i,m,2)*rho(q,i,m,2) Sig(p,q,2) = Sig(p,q,2) + num*eps/(eps**2 + eta**2) if(p == q) Z(p,2) = Z(p,2) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do end do end do end do ! Virtual part of the correlation self-energy do p=nC(2)+1,nBas-nR(2) do q=nC(2)+1,nBas-nR(2) do a=nO(2)+1,nBas-nR(2) do m=1,nSt eps = e(p,2) - e(a,2) - Om(m) num = rho(p,a,m,2)*rho(q,a,m,2) Sig(p,q,2) = Sig(p,q,2) + num*eps/(eps**2 + eta**2) if(p == q) Z(p,2) = Z(p,2) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do end do end do end do ! GM correlation energy do i=nC(2)+1,nO(2) do a=nO(2)+1,nBas-nR(2) do m=1,nSt eps = e(a,2) - e(i,2) + Om(m) num = rho(a,i,m,2)**2 EcGM(2) = EcGM(2) - num*eps/(eps**2 + eta**2) end do end do end do ! Compute renormalization factor from derivative Z(:,:) = 1d0/(1d0 - Z(:,:)) end subroutine