10
1
mirror of https://github.com/pfloos/quack synced 2025-01-03 18:16:03 +01:00

creating new routines gor G branch in RPA, LR, GF and GW

This commit is contained in:
Pierre-Francois Loos 2024-09-06 22:14:51 +02:00
parent 27f14363c7
commit f85bd15e03
25 changed files with 962 additions and 117 deletions

View File

@ -25,7 +25,6 @@ subroutine GGF2_phBSE(TDA,dBSE,dTDA,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,eGF,E
! Local variables
logical :: dRPA = .false.
integer :: ispin
double precision,allocatable :: OmBSE(:)
double precision,allocatable :: XpY(:,:)
double precision,allocatable :: XmY(:,:)
@ -43,16 +42,15 @@ subroutine GGF2_phBSE(TDA,dBSE,dTDA,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,eGF,E
allocate(OmBSE(nS),XpY(nS,nS),XmY(nS,nS),A_sta(nS,nS),KA_sta(nS,nS))
allocate(B_sta(nS,nS),KB_sta(nS,nS))
ispin = 3
EcBSE = 0d0
call phLR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,eGF,ERI,A_sta)
if(.not.TDA) call phLR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,ERI,B_sta)
call phGLR_A(dRPA,nBas,nC,nO,nV,nR,nS,1d0,eGF,ERI,A_sta)
if(.not.TDA) call phGLR_B(dRPA,nBas,nC,nO,nV,nR,nS,1d0,ERI,B_sta)
! Compute static kernel
call RGF2_phBSE_static_kernel_A(ispin,eta,nBas,nC,nO,nV,nR,nS,1d0,ERI,eGF,KA_sta)
if(.not.TDA) call RGF2_phBSE_static_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,1d0,ERI,eGF,KB_sta)
call GGF2_phBSE_static_kernel_A(eta,nBas,nC,nO,nV,nR,nS,1d0,ERI,eGF,KA_sta)
if(.not.TDA) call GGF2_phBSE_static_kernel_B(eta,nBas,nC,nO,nV,nR,nS,1d0,ERI,eGF,KB_sta)
A_sta(:,:) = A_sta(:,:) + KA_sta(:,:)
if(.not.TDA) B_sta(:,:) = B_sta(:,:) + KB_sta(:,:)
@ -60,12 +58,12 @@ subroutine GGF2_phBSE(TDA,dBSE,dTDA,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,eGF,E
! Compute phBSE@GF2 excitation energies
call phLR(TDA,nS,A_sta,B_sta,EcBSE,OmBSE,XpY,XmY)
call print_excitation_energies('phBSE@GGF2','spinorbital',nS,OmBSE)
call print_excitation_energies('phBSE@GGF2','generalized',nS,OmBSE)
call phLR_transition_vectors(.true.,nBas,nC,nO,nV,nR,nS,dipole_int,OmBSE,XpY,XmY)
! Compute dynamic correction for BSE via perturbation theory
! if(dBSE) &
! call GF2_phBSE_dynamic_perturbation(dTDA,ispin,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,eGF,KA_sta,KB_sta,OmBSE,XpY,XmY)
! call GGF2_phBSE_dynamic_perturbation(dTDA,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,eGF,KA_sta,KB_sta,OmBSE,XpY,XmY)
end subroutine

View File

@ -0,0 +1,94 @@
subroutine GGF2_phBSE_static_kernel_A(eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,eGF,KA_sta)
! Compute the resonant part of the static BSE@GF2 matrix
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas,nC,nO,nV,nR,nS
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: eGF(nBas)
! Local variables
double precision :: dem,num
integer :: i,j,k,l
integer :: a,b,c,d
integer :: ia,jb
! Output variables
double precision,intent(out) :: KA_sta(nS,nS)
! Initialization
KA_sta(:,:) = 0d0
! Second-order correlation kernel for the block A of the spinorbital manifold
jb = 0
!$omp parallel do default(private) shared(KA_sta,ERI,num,dem,eGF,nO,nBas,eta,nC,nR)
do j=nC+1,nO
do b=nO+1,nBas-nR
jb = (b-nO) + (j-1)*(nBas-nO)
ia = 0
do i=nC+1,nO
do a=nO+1,nBas-nR
ia = (a-nO) + (i-1)*(nBas-nO)
do k=nC+1,nO
do c=nO+1,nBas-nR
dem = - (eGF(c) - eGF(k))
num = ERI(j,k,i,c)*ERI(a,c,b,k) - ERI(j,k,i,c)*ERI(a,c,k,b) &
- ERI(j,k,c,i)*ERI(a,c,b,k) + ERI(j,k,c,i)*ERI(a,c,k,b)
KA_sta(ia,jb) = KA_sta(ia,jb) - num*dem/(dem**2 + eta**2)
dem = + (eGF(c) - eGF(k))
num = ERI(j,c,i,k)*ERI(a,k,b,c) - ERI(j,c,i,k)*ERI(a,k,c,b) &
- ERI(j,c,k,i)*ERI(a,k,b,c) + ERI(j,c,k,i)*ERI(a,k,c,b)
KA_sta(ia,jb) = KA_sta(ia,jb) + num*dem/(dem**2 + eta**2)
end do
end do
do c=nO+1,nBas-nR
do d=nO+1,nBas-nR
dem = - (eGF(c) + eGF(d))
num = ERI(a,j,c,d)*ERI(c,d,i,b) - ERI(a,j,c,d)*ERI(c,d,b,i) &
- ERI(a,j,d,c)*ERI(c,d,i,b) + ERI(a,j,d,c)*ERI(c,d,b,i)
KA_sta(ia,jb) = KA_sta(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
end do
end do
do k=nC+1,nO
do l=nC+1,nO
dem = - (eGF(k) + eGF(l))
num = ERI(a,j,k,l)*ERI(k,l,i,b) - ERI(a,j,k,l)*ERI(k,l,b,i) &
- ERI(a,j,l,k)*ERI(k,l,i,b) + ERI(a,j,l,k)*ERI(k,l,b,i)
KA_sta(ia,jb) = KA_sta(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
end do
end do
end do
end do
end do
end do
!$omp end parallel do
end subroutine

View File

@ -0,0 +1,94 @@
subroutine GGF2_phBSE_static_kernel_B(eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,eGF,KB_sta)
! Compute the anti-resonant part of the static BSE@GF2 matrix
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas,nC,nO,nV,nR,nS
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: eGF(nBas)
! Local variables
double precision :: dem,num
integer :: i,j,k,l
integer :: a,b,c,d
integer :: ia,jb
! Output variables
double precision,intent(out) :: KB_sta(nS,nS)
! Initialization
KB_sta(:,:) = 0d0
! Second-order correlation kernel for the block A of the spinorbital manifold
jb = 0
!$omp parallel do default(private) shared(KB_sta,ERI,num,dem,eGF,nO,nBas,eta,nC,nR)
do j=nC+1,nO
do b=nO+1,nBas-nR
jb = (b-nO) + (j-1)*(nBas-nO)
ia = 0
do i=nC+1,nO
do a=nO+1,nBas-nR
ia = (a-nO) + (i-1)*(nBas-nO)
do k=nC+1,nO
do c=nO+1,nBas-nR
dem = + eGF(k) - eGF(c)
num = ERI(b,k,i,c)*ERI(a,c,j,k) - ERI(b,k,i,c)*ERI(a,c,k,j) &
- ERI(b,k,c,i)*ERI(a,c,j,k) + ERI(b,k,c,i)*ERI(a,c,k,j)
KB_sta(ia,jb) = KB_sta(ia,jb) - num*dem/(dem**2 + eta**2)
dem = - eGF(c) + eGF(k)
num = ERI(b,c,i,k)*ERI(a,k,j,c) - ERI(b,c,i,k)*ERI(a,k,c,j) &
- ERI(b,c,k,i)*ERI(a,k,j,c) + ERI(b,c,k,i)*ERI(a,k,c,j)
KB_sta(ia,jb) = KB_sta(ia,jb) - num*dem/(dem**2 + eta**2)
end do
end do
do c=nO+1,nBas-nR
do d=nO+1,nBas-nR
dem = - eGF(c) - eGF(d)
num = ERI(a,b,c,d)*ERI(c,d,i,j) - ERI(a,b,c,d)*ERI(c,d,j,i) &
- ERI(a,b,d,c)*ERI(c,d,i,j) + ERI(a,b,d,c)*ERI(c,d,j,i)
KB_sta(ia,jb) = KB_sta(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
end do
end do
do k=nC+1,nO
do l=nC+1,nO
dem = + eGF(k) + eGF(l)
num = ERI(a,b,k,l)*ERI(k,l,i,j) - ERI(a,b,k,l)*ERI(k,l,j,i) &
- ERI(a,b,l,k)*ERI(k,l,i,j) + ERI(a,b,l,k)*ERI(k,l,j,i)
KB_sta(ia,jb) = KB_sta(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
end do
end do
end do
end do
end do
end do
!$omp end parallel do
end subroutine

View File

@ -23,8 +23,6 @@ subroutine GGF2_ppBSE(TDA,dBSE,dTDA,eta,nBas,nC,nO,nV,nR,ERI,dipole_int,eGF,EcBS
! Local variables
integer :: ispin
integer :: nOO
integer :: nVV
@ -48,7 +46,8 @@ subroutine GGF2_ppBSE(TDA,dBSE,dTDA,eta,nBas,nC,nO,nV,nR,ERI,dipole_int,eGF,EcBS
double precision,intent(out) :: EcBSE
ispin = 4
! Initialization
EcBSE = 0d0
nOO = nO*(nO-1)/2
@ -61,13 +60,13 @@ subroutine GGF2_ppBSE(TDA,dBSE,dTDA,eta,nBas,nC,nO,nV,nR,ERI,dipole_int,eGF,EcBS
! Compute BSE excitation energies
if(.not.TDA) call RGF2_ppBSE_static_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nOO,nVV,1d0,ERI,eGF,KB_sta)
call RGF2_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nVV,1d0,ERI,eGF,KC_sta)
call RGF2_ppBSE_static_kernel_D(ispin,eta,nBas,nC,nO,nV,nR,nOO,1d0,ERI,eGF,KD_sta)
if(.not.TDA) call GGF2_ppBSE_static_kernel_B(eta,nBas,nC,nO,nV,nR,nOO,nVV,1d0,ERI,eGF,KB_sta)
call GGF2_ppBSE_static_kernel_C(eta,nBas,nC,nO,nV,nR,nVV,1d0,ERI,eGF,KC_sta)
call GGF2_ppBSE_static_kernel_D(eta,nBas,nC,nO,nV,nR,nOO,1d0,ERI,eGF,KD_sta)
if(.not.TDA) call ppLR_B(ispin,nBas,nC,nO,nV,nR,nOO,nVV,1d0,ERI,Bpp)
call ppLR_C(ispin,nBas,nC,nO,nV,nR,nVV,1d0,eGF,ERI,Cpp)
call ppLR_D(ispin,nBas,nC,nO,nV,nR,nOO,1d0,eGF,ERI,Dpp)
if(.not.TDA) call ppGLR_B(nBas,nC,nO,nV,nR,nOO,nVV,1d0,ERI,Bpp)
call ppGLR_C(nBas,nC,nO,nV,nR,nVV,1d0,eGF,ERI,Cpp)
call ppGLR_D(nBas,nC,nO,nV,nR,nOO,1d0,eGF,ERI,Dpp)
Bpp(:,:) = Bpp(:,:) + KB_sta(:,:)
Cpp(:,:) = Cpp(:,:) + KC_sta(:,:)
@ -82,7 +81,7 @@ subroutine GGF2_ppBSE(TDA,dBSE,dTDA,eta,nBas,nC,nO,nV,nR,ERI,dipole_int,eGF,EcBS
!----------------------------------------------------!
! if(dBSE) &
! call RGF2_ppBSE_dynamic_perturbation(ispin,dTDA,eta,nBas,nC,nO,nV,nR,nOO,nVV,eGF,ERI,dipole_int, &
! call GGF2_ppBSE_dynamic_perturbation(dTDA,eta,nBas,nC,nO,nV,nR,nOO,nVV,eGF,ERI,dipole_int, &
! Om1,X1,Y1,Om2,X2,Y2,KB_sta,KC_sta,KD_sta)
deallocate(Om1,X1,Y1,Om2,X2,Y2,Bpp,Cpp,Dpp,KB_sta,KC_sta,KD_sta)

View File

@ -0,0 +1,68 @@
subroutine GGF2_ppBSE_static_kernel_B(eta,nBas,nC,nO,nV,nR,nOO,nVV,lambda,ERI,eGF,KB_sta)
! Compute the resonant part of the dynamic BSE@GF2 matrix
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nOO
integer,intent(in) :: nVV
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: eGF(nBas)
! Local variables
double precision,external :: Kronecker_delta
double precision :: dem,num
integer :: i,j,a,b,m,e
integer :: ab,ij
! Output variables
double precision,intent(out) :: KB_sta(nVV,nOO)
! Initialization
KB_sta(:,:) = 0d0
! Second-order correlation kernel for the block B of the spinorbital manifold
ab = 0
do a=nO+1,nBas-nR
do b=a+1,nBas-nR
ab = ab + 1
ij = 0
do i=nC+1,nO
do j=i+1,nO
ij = ij + 1
do m=nC+1,nO
do e=nO+1,nBas-nR
dem = eGF(m) - eGF(e)
num = (ERI(a,m,i,e) - ERI(a,m,e,i)) * (ERI(e,b,m,j) - ERI(e,b,j,m))
num = num + (ERI(a,e,i,m) - ERI(a,e,m,i)) * (ERI(m,b,e,j) - ERI(m,b,j,e))
num = num - (ERI(b,m,i,e) - ERI(b,m,e,i)) * (ERI(e,a,m,j) - ERI(e,a,j,m))
num = num - (ERI(b,e,i,m) - ERI(b,e,m,i)) * (ERI(m,a,e,j) - ERI(m,a,j,e))
KB_sta(ab,ij) = KB_sta(ab,ij) + num*dem/(dem**2 + eta**2)
end do
end do
end do
end do
end do
end do
end subroutine

View File

@ -0,0 +1,69 @@
subroutine GGF2_ppBSE_static_kernel_C(eta,nBas,nC,nO,nV,nR,nVV,lambda,ERI,eGF,KC_sta)
! Compute the resonant part of the static BSE@GF2 matrix
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nVV
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: eGF(nBas)
! Local variables
double precision,external :: Kronecker_delta
double precision :: dem,num
integer :: m
integer :: a,b,c,d,e
integer :: a0,aa,ab,cd
! Output variables
double precision,intent(out) :: KC_sta(nVV,nVV)
! Initialization
KC_sta(:,:) = 0d0
! Second-order correlation kernel for the block C of the singlet manifold
ab = 0
do a=nO+1,nBas-nR
do b=a+1,nBas-nR
ab = ab + 1
cd = 0
do c=nO+1,nBas-nR
do d=c+1,nBas-nR
cd = cd + 1
do m=nC+1,nO
do e=nO+1,nBas-nR
dem = eGF(m) - eGF(e)
num = (ERI(a,m,c,e) - ERI(a,m,e,c)) * (ERI(e,b,m,d) - ERI(e,b,d,m))
num = num + (ERI(a,e,c,m) - ERI(a,e,m,c)) * (ERI(m,b,e,d) - ERI(m,b,d,e))
num = num - (ERI(b,m,c,e) - ERI(b,m,e,c)) * (ERI(e,a,m,d) - ERI(e,a,d,m))
num = num - (ERI(b,e,c,m) - ERI(b,e,m,c)) * (ERI(m,a,e,d) - ERI(m,a,d,e))
KC_sta(ab,cd) = KC_sta(ab,cd) + num*dem/(dem**2 + eta**2)
end do
end do
end do
end do
end do
end do
end subroutine

View File

@ -0,0 +1,68 @@
subroutine GGF2_ppBSE_static_kernel_D(eta,nBas,nC,nO,nV,nR,nOO,lambda,ERI,eGF,KD_sta)
! Compute the resonant part of the static BSE@GF2 matrix
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nOO
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: eGF(nBas)
! Local variables
double precision,external :: Kronecker_delta
double precision :: dem,num
integer :: i,j,k,l,m
integer :: e
integer :: ij,kl
! Output variables
double precision,intent(out) :: KD_sta(nOO,nOO)
! Initialization
KD_sta(:,:) = 0d0
! Second-order correlation kernel for the block D of the spinorbital manifold
ij = 0
do i=nC+1,nO
do j=i+1,nO
ij = ij + 1
kl = 0
do k=nC+1,nO
do l=k+1,nO
kl = kl + 1
do m=nC+1,nO
do e=nO+1,nBas-nR
dem = eGF(m) - eGF(e)
num = (ERI(i,m,k,e) - ERI(i,m,e,k)) * (ERI(e,j,m,l) - ERI(e,j,l,m))
num = num + (ERI(i,e,k,m) - ERI(i,e,m,k)) * (ERI(m,j,e,l) - ERI(m,j,l,e))
num = num - (ERI(j,m,k,e) - ERI(j,m,e,k)) * (ERI(e,i,m,l) - ERI(e,i,l,m))
num = num - (ERI(j,e,k,m) - ERI(j,e,m,k)) * (ERI(m,i,e,l) - ERI(m,i,l,e))
KD_sta(ij,kl) = KD_sta(ij,kl) + num*dem/(dem**2 + eta**2)
end do
end do
end do
end do
end do
end do
end subroutine

View File

@ -40,7 +40,6 @@ subroutine GG0W0(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA
logical :: print_W = .true.
logical :: dRPA
integer :: ispin
double precision :: EcRPA
double precision :: EcBSE
double precision :: EcGM
@ -85,10 +84,6 @@ subroutine GG0W0(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA
write(*,*)
end if
! Spin manifold
ispin = 3
! Memory allocation
allocate(Aph(nS,nS),Bph(nS,nS),SigC(nBas),Z(nBas),Om(nS),XpY(nS,nS),XmY(nS,nS),rho(nBas,nBas,nS), &
@ -98,12 +93,12 @@ subroutine GG0W0(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA
! Compute screening !
!-------------------!
call phLR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,eHF,ERI,Aph)
if(.not.TDA_W) call phLR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,ERI,Bph)
call phGLR_A(dRPA,nBas,nC,nO,nV,nR,nS,1d0,eHF,ERI,Aph)
if(.not.TDA_W) call phGLR_B(dRPA,nBas,nC,nO,nV,nR,nS,1d0,ERI,Bph)
call phLR(TDA_W,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
call phGLR(TDA_W,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
if(print_W) call print_excitation_energies('phRPA@GHF','spinorbital',nS,Om)
if(print_W) call print_excitation_energies('phRPA@GHF','generalized',nS,Om)
!--------------------------!
! Compute spectral weights !
@ -147,10 +142,10 @@ subroutine GG0W0(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA
! Compute the RPA correlation energy
call phLR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,eGW,ERI,Aph)
if(.not.TDA_W) call phLR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,ERI,Bph)
call phGLR_A(dRPA,nBas,nC,nO,nV,nR,nS,1d0,eGW,ERI,Aph)
if(.not.TDA_W) call phGLR_B(dRPA,nBas,nC,nO,nV,nR,nS,1d0,ERI,Bph)
call phLR(TDA_W,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
call phGLR(TDA_W,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
!--------------!
! Dump results !

View File

@ -1,4 +1,4 @@
subroutine GGW_ppBSE(TDA_W,TDA,dBSE,dTDA,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,eW,eGW,EcBSE)
subroutine GGW_ppBSE(TDA_W,TDA,dBSE,dTDA,eta,nOrb,nC,nO,nV,nR,nS,ERI,dipole_int,eW,eGW,EcBSE)
! Compute the Bethe-Salpeter excitation energies at the pp level based on a GHF reference
@ -13,20 +13,19 @@ subroutine GGW_ppBSE(TDA_W,TDA,dBSE,dTDA,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,
logical,intent(in) :: dTDA
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: eW(nBas)
double precision,intent(in) :: eGW(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
double precision,intent(in) :: eW(nOrb)
double precision,intent(in) :: eGW(nOrb)
double precision,intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
double precision,intent(in) :: dipole_int(nOrb,nOrb,ncart)
! Local variables
integer :: ispin
integer :: isp_W
logical :: dRPA = .false.
@ -71,20 +70,19 @@ subroutine GGW_ppBSE(TDA_W,TDA,dBSE,dTDA,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,
isp_W = 3
EcRPA = 0d0
allocate(OmRPA(nS),XpY_RPA(nS,nS),XmY_RPA(nS,nS),rho_RPA(nBas,nBas,nS), &
allocate(OmRPA(nS),XpY_RPA(nS,nS),XmY_RPA(nS,nS),rho_RPA(nOrb,nOrb,nS), &
Aph(nS,nS),Bph(nS,nS))
call phLR_A(isp_W,dRPA_W,nBas,nC,nO,nV,nR,nS,1d0,eW,ERI,Aph)
call phLR_A(isp_W,dRPA_W,nOrb,nC,nO,nV,nR,nS,1d0,eW,ERI,Aph)
if(.not.TDA_W) call phLR_B(isp_W,dRPA_W,nBas,nC,nO,nV,nR,nS,1d0,ERI,Bph)
if(.not.TDA_W) call phLR_B(isp_W,dRPA_W,nOrb,nC,nO,nV,nR,nS,1d0,ERI,Bph)
call phLR(TDA_W,nS,Aph,Bph,EcRPA,OmRPA,XpY_RPA,XmY_RPA)
call RGW_excitation_density(nBas,nC,nO,nR,nS,ERI,XpY_RPA,rho_RPA)
call RGW_excitation_density(nOrb,nC,nO,nR,nS,ERI,XpY_RPA,rho_RPA)
deallocate(XpY_RPA,XmY_RPA,Aph,Bph)
ispin = 4
EcBSE = 0d0
nOO = nO*(nO-1)/2
@ -97,13 +95,13 @@ subroutine GGW_ppBSE(TDA_W,TDA,dBSE,dTDA,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,
! Compute BSE excitation energies
call RGW_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,1d0,ERI,OmRPA,rho_RPA,KC_sta)
call RGW_ppBSE_static_kernel_D(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,1d0,ERI,OmRPA,rho_RPA,KD_sta)
if(.not.TDA) call RGW_ppBSE_static_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,1d0,ERI,OmRPA,rho_RPA,KB_sta)
call GGW_ppBSE_static_kernel_C(eta,nOrb,nC,nO,nV,nR,nS,nVV,1d0,ERI,OmRPA,rho_RPA,KC_sta)
call GGW_ppBSE_static_kernel_D(eta,nOrb,nC,nO,nV,nR,nS,nOO,1d0,ERI,OmRPA,rho_RPA,KD_sta)
if(.not.TDA) call GGW_ppBSE_static_kernel_B(eta,nOrb,nC,nO,nV,nR,nS,nOO,nVV,1d0,ERI,OmRPA,rho_RPA,KB_sta)
call ppLR_C(ispin,nBas,nC,nO,nV,nR,nVV,1d0,eGW,ERI,Cpp)
call ppLR_D(ispin,nBas,nC,nO,nV,nR,nOO,1d0,eGW,ERI,Dpp)
if(.not.TDA) call ppLR_B(ispin,nBas,nC,nO,nV,nR,nOO,nVV,1d0,ERI,Bpp)
call ppGLR_C(nOrb,nC,nO,nV,nR,nVV,1d0,eGW,ERI,Cpp)
call ppGLR_D(nOrb,nC,nO,nV,nR,nOO,1d0,eGW,ERI,Dpp)
if(.not.TDA) call ppGLR_B(nOrb,nC,nO,nV,nR,nOO,nVV,1d0,ERI,Bpp)
Bpp(:,:) = Bpp(:,:) + KB_sta(:,:)
Cpp(:,:) = Cpp(:,:) + KC_sta(:,:)
@ -111,14 +109,14 @@ subroutine GGW_ppBSE(TDA_W,TDA,dBSE,dTDA,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,
call ppLR(TDA,nOO,nVV,Bpp,Cpp,Dpp,Om1,X1,Y1,Om2,X2,Y2,EcBSE)
call ppLR_transition_vectors(.true.,nBas,nC,nO,nV,nR,nOO,nVV,dipole_int,Om1,X1,Y1,Om2,X2,Y2)
call ppLR_transition_vectors(.true.,nOrb,nC,nO,nV,nR,nOO,nVV,dipole_int,Om1,X1,Y1,Om2,X2,Y2)
!----------------------------------------------------!
! Compute the dynamical screening at the ppBSE level !
!----------------------------------------------------!
! if(dBSE) &
! call GGW_ppBSE_dynamic_perturbation(ispin,dTDA,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,eW,eGW,ERI,dipole_int,OmRPA,rho_RPA, &
! call GGW_ppBSE_dynamic_perturbation(dTDA,eta,nOrb,nC,nO,nV,nR,nS,nOO,nVV,eW,eGW,ERI,dipole_int,OmRPA,rho_RPA, &
! Om1,X1,Y1,Om2,X2,Y2,KB_sta,KC_sta,KD_sta)

View File

@ -0,0 +1,66 @@
subroutine GGW_ppBSE_static_kernel_B(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,ERI,Om,rho,KB)
! Compute the VVOO block of the static screening W for the pp-BSE
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
integer,intent(in) :: nOO
integer,intent(in) :: nVV
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nBas,nBas,nS)
! Local variables
double precision,external :: Kronecker_delta
double precision :: chi
double precision :: eps
integer :: a,b,i,j,ab,ij,m
! Output variables
double precision,intent(out) :: KB(nVV,nOO)
! Initialization
KB(:,:) = 0d0
!---------------!
! SpinOrb block !
!---------------!
ab = 0
do a=nO+1,nBas-nR
do b=a+1,nBas-nR
ab = ab + 1
ij = 0
do i=nC+1,nO
do j=i+1,nO
ij = ij + 1
chi = 0d0
do m=1,nS
eps = Om(m)**2 + eta**2
chi = chi - rho(i,a,m)*rho(j,b,m)*Om(m)/eps &
+ rho(i,b,m)*rho(a,j,m)*Om(m)/eps
end do
KB(ab,ij) = 2d0*lambda*chi
end do
end do
end do
end do
end subroutine

View File

@ -0,0 +1,67 @@
subroutine GGW_ppBSE_static_kernel_C(eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,ERI,Om,rho,KC)
! Compute the VVVV block of the static screening W for the pp-BSE
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
integer,intent(in) :: nVV
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nBas,nBas,nS)
! Local variables
double precision,external :: Kronecker_delta
double precision :: chi
double precision :: eps
double precision :: tmp_ab, lambda4, eta2
integer :: a,b,c,d,ab,cd,m
integer :: a0, aa
double precision, allocatable :: Om_tmp(:)
double precision, allocatable :: tmp_m(:,:,:)
double precision, allocatable :: tmp(:,:,:,:)
! Output variables
double precision,intent(out) :: KC(nVV,nVV)
!---------------!
! SpinOrb block !
!---------------!
ab = 0
do a=nO+1,nBas-nR
do b=a+1,nBas-nR
ab = ab + 1
cd = 0
do c=nO+1,nBas-nR
do d=c+1,nBas-nR
cd = cd + 1
chi = 0d0
do m=1,nS
eps = Om(m)**2 + eta**2
chi = chi - rho(a,c,m)*rho(b,d,m)*Om(m)/eps &
+ rho(a,d,m)*rho(b,c,m)*Om(m)/eps
end do
KC(ab,cd) = 2d0*lambda*chi
end do
end do
end do
end do
end subroutine

View File

@ -0,0 +1,65 @@
subroutine GGW_ppBSE_static_kernel_D(eta,nBas,nC,nO,nV,nR,nS,nOO,lambda,ERI,Om,rho,KD)
! Compute the OOOO block of the static screening W for the pp-BSE
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
integer,intent(in) :: nOO
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nBas,nBas,nS)
! Local variables
double precision,external :: Kronecker_delta
double precision :: chi
double precision :: eps
integer :: i,j,k,l,ij,kl,m
! Output variables
double precision,intent(out) :: KD(nOO,nOO)
! Initialization
KD(:,:) = 0d0
!---------------!
! SpinOrb block !
!---------------!
ij = 0
do i=nC+1,nO
do j=i+1,nO
ij = ij + 1
kl = 0
do k=nC+1,nO
do l=k+1,nO
kl = kl + 1
chi = 0d0
do m=1,nS
eps = Om(m)**2 + eta**2
chi = chi - rho(i,k,m)*rho(j,l,m)*Om(m)/eps &
+ rho(i,l,m)*rho(j,k,m)*Om(m)/eps
end do
KD(ij,kl) = 2d0*lambda*chi
end do
end do
end do
end do
end subroutine

View File

@ -43,7 +43,6 @@ subroutine evGGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dop
logical :: linear_mixing
logical :: dRPA = .true.
integer :: ispin
integer :: nSCF
integer :: n_diis
double precision :: rcond
@ -100,7 +99,6 @@ subroutine evGGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dop
! Initialization
nSCF = 0
ispin = 3
n_diis = 0
Conv = 1d0
e_diis(:,:) = 0d0
@ -118,10 +116,10 @@ subroutine evGGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dop
! Compute screening
call phLR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,eGW,ERI,Aph)
if(.not.TDA_W) call phLR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,ERI,Bph)
call phGLR_A(dRPA,nBas,nC,nO,nV,nR,nS,1d0,eGW,ERI,Aph)
if(.not.TDA_W) call phGLR_B(dRPA,nBas,nC,nO,nV,nR,nS,1d0,ERI,Bph)
call phLR(TDA_W,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
call phGLR(TDA_W,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
! Compute spectral weights

View File

@ -58,7 +58,6 @@ subroutine qsGGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dop
integer :: nSCF
integer :: nBasSq
integer :: nBas2Sq
integer :: ispin
integer :: ixyz
integer :: n_diis
double precision :: ET,ETaa,ETbb
@ -154,7 +153,6 @@ subroutine qsGGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dop
nSCF = -1
n_diis = 0
ispin = 3
Conv = 1d0
P(:,:) = PHF(:,:)
eGW(:) = eHF(:)
@ -253,11 +251,11 @@ subroutine qsGGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dop
! Compute linear response
call phLR_A(ispin,dRPA,nBas2,nC,nO,nV,nR,nS,1d0,eGW,ERI_MO,Aph)
if(.not.TDA_W) call phLR_B(ispin,dRPA,nBas2,nC,nO,nV,nR,nS,1d0,ERI_MO,Bph)
call phGLR_A(dRPA,nBas2,nC,nO,nV,nR,nS,1d0,eGW,ERI_MO,Aph)
if(.not.TDA_W) call phGLR_B(dRPA,nBas2,nC,nO,nV,nR,nS,1d0,ERI_MO,Bph)
call phLR(TDA_W,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
if(print_W) call print_excitation_energies('phRPA@GW@GHF','spinorbital',nS,Om)
call phGLR(TDA_W,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
if(print_W) call print_excitation_energies('phRPA@GW@GHF','generalized',nS,Om)
! Compute correlation part of the self-energy

View File

@ -1,4 +1,4 @@
subroutine phRLR_A(dRPA,nOrb,nC,nO,nV,nR,nS,lambda,e,ERI,Aph)
subroutine phGLR_A(dRPA,nOrb,nC,nO,nV,nR,nS,lambda,e,ERI,Aph)
! Compute resonant block of the ph channel

View File

@ -1,4 +1,4 @@
subroutine phLR_oscillator_strength(nBas,nC,nO,nV,nR,nS,maxS,dipole_int,Om,XpY,XmY,os)
subroutine phLR_oscillator_strength(nOrb,nC,nO,nV,nR,nS,maxS,dipole_int,Om,XpY,XmY,os)
! Compute linear response
@ -7,14 +7,14 @@ subroutine phLR_oscillator_strength(nBas,nC,nO,nV,nR,nS,maxS,dipole_int,Om,XpY,X
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
integer,intent(in) :: maxS
double precision :: dipole_int(nBas,nBas,ncart)
double precision :: dipole_int(nOrb,nOrb,ncart)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: XpY(nS,nS)
double precision,intent(in) :: XmY(nS,nS)
@ -44,7 +44,7 @@ subroutine phLR_oscillator_strength(nBas,nC,nO,nV,nR,nS,maxS,dipole_int,Om,XpY,X
do ixyz=1,ncart
jb = 0
do j=nC+1,nO
do b=nO+1,nBas-nR
do b=nO+1,nOrb-nR
jb = jb + 1
f(m,ixyz) = f(m,ixyz) + dipole_int(j,b,ixyz)*XpY(m,jb)
end do
@ -68,8 +68,4 @@ subroutine phLR_oscillator_strength(nBas,nC,nO,nV,nR,nS,maxS,dipole_int,Om,XpY,X
write(*,*) '---------------------------------------------------------------'
write(*,*)
! do m=1,maxS
! write(*,'(I3,3F12.6)') m,Om(m),os(m)
! end do
end subroutine

125
src/LR/ppGLR.f90 Normal file
View File

@ -0,0 +1,125 @@
subroutine ppGLR(TDA,nOO,nVV,Bpp,Cpp,Dpp,Om1,X1,Y1,Om2,X2,Y2,EcRPA)
!
! Solve the pp-RPA linear eigenvalue problem
!
! right eigen-problem: H R = R w
! left eigen-problem: H.T L = L w
!
! where L.T R = 1
!
!
! (+C +B)
! H = ( ) where C = C.T and D = D.T
! (-B.T -D)
!
! (w1 0) (X1 X2) (+X1 +X2)
! w = ( ), R = ( ) and L = ( )
! (0 w2) (Y1 Y2) (-Y1 -Y2)
!
!
! the normalisation condition reduces to
!
! X1.T X2 - Y1.T Y2 = 0
! X1.T X1 - Y1.T Y1 = 1
! X2.T X2 - Y2.T Y2 = 1
!
implicit none
include 'parameters.h'
logical, intent(in) :: TDA
integer, intent(in) :: nOO, nVV
double precision, intent(in) :: Bpp(nVV,nOO), Cpp(nVV,nVV), Dpp(nOO,nOO)
double precision, intent(out) :: Om1(nVV), X1(nVV,nVV), Y1(nOO,nVV)
double precision, intent(out) :: Om2(nOO), X2(nVV,nOO), Y2(nOO,nOO)
double precision, intent(out) :: EcRPA
logical :: imp_bio, verbose
integer :: i, j, N
double precision :: EcRPA1, EcRPA2
double precision :: thr_d, thr_nd, thr_deg
double precision,allocatable :: M(:,:), Z(:,:), Om(:)
double precision, external :: trace_matrix
N = nOO + nVV
allocate(M(N,N), Z(N,N), Om(N))
if(TDA) then
X1(:,:) = +Cpp(:,:)
Y1(:,:) = 0d0
if(nVV > 0) call diagonalize_matrix(nVV, X1, Om1)
X2(:,:) = 0d0
Y2(:,:) = -Dpp(:,:)
if(nOO > 0) call diagonalize_matrix(nOO, Y2, Om2)
else
! Diagonal blocks
M( 1:nVV , 1:nVV) = + Cpp(1:nVV,1:nVV)
M(nVV+1:nVV+nOO,nVV+1:nVV+nOO) = - Dpp(1:nOO,1:nOO)
! Off-diagonal blocks
M( 1:nVV ,nVV+1:nOO+nVV) = - Bpp(1:nVV,1:nOO)
M(nVV+1:nOO+nVV, 1:nVV) = + transpose(Bpp(1:nVV,1:nOO))
if((nOO .eq. 0) .or. (nVV .eq. 0)) then
! Diagonalize the p-p matrix
if(nOO+nVV > 0) call diagonalize_general_matrix(nOO+nVV, M, Om, Z)
! Split the various quantities in p-p and h-h parts
call sort_ppRPA(nOO, nVV, Om, Z, Om1, X1, Y1, Om2, X2, Y2)
else
thr_d = 1d-6 ! to determine if diagonal elements of L.T x R are close enouph to 1
thr_nd = 1d-6 ! to determine if non-diagonal elements of L.T x R are close enouph to 1
thr_deg = 1d-8 ! to determine if two eigenvectors are degenerate or not
imp_bio = .True. ! impose bi-orthogonality
verbose = .False.
call diagonalize_nonsym_matrix(N, M, Z, Om, thr_d, thr_nd, thr_deg, imp_bio, verbose)
do i = 1, nOO
Om2(i) = Om(i)
do j = 1, nVV
X2(j,i) = Z(j,i)
enddo
do j = 1, nOO
Y2(j,i) = Z(nVV+j,i)
enddo
enddo
do i = 1, nVV
Om1(i) = Om(nOO+i)
do j = 1, nVV
X1(j,i) = M(j,nOO+i)
enddo
do j = 1, nOO
Y1(j,i) = M(nVV+j,nOO+i)
enddo
enddo
endif
end if
! Compute the RPA correlation energy
EcRPA = 0.5d0 * (sum(Om1) - sum(Om2) - trace_matrix(nVV, Cpp) - trace_matrix(nOO, Dpp))
EcRPA1 = +sum(Om1) - trace_matrix(nVV, Cpp)
EcRPA2 = -sum(Om2) - trace_matrix(nOO, Dpp)
if(abs(EcRPA - EcRPA1) > 1d-6 .or. abs(EcRPA - EcRPA2) > 1d-6) then
print*,'!!! Issue in pp-RPA linear reponse calculation RPA1 != RPA2 !!!'
endif
deallocate(M, Z, Om)
end subroutine

47
src/LR/ppGLR_B.f90 Normal file
View File

@ -0,0 +1,47 @@
subroutine ppGLR_B(nBas,nC,nO,nV,nR,nOO,nVV,lambda,ERI,Bpp)
! Compute the B matrix of the pp channel
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nOO
integer,intent(in) :: nVV
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
! Local variables
double precision,external :: Kronecker_delta
integer :: a,b,i,j,ab,ij
! Output variables
double precision,intent(out) :: Bpp(nVV,nOO)
! Build the B matrix for the spin-orbital basis
ab = 0
do a=nO+1,nBas-nR
do b=a+1,nBas-nR
ab = ab + 1
ij = 0
do i=nC+1,nO
do j=i+1,nO
ij = ij + 1
Bpp(ab,ij) = lambda*(ERI(a,b,i,j) - ERI(a,b,j,i))
end do
end do
end do
end do
end subroutine

61
src/LR/ppGLR_C.f90 Normal file
View File

@ -0,0 +1,61 @@
subroutine ppGLR_C(nBas,nC,nO,nV,nR,nVV,lambda,e,ERI,Cpp)
! Compute the C matrix of the pp channel
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nVV
double precision,intent(in) :: lambda
double precision,intent(in) :: e(nBas),ERI(nBas,nBas,nBas,nBas)
! Local variables
double precision :: eF
double precision,external :: Kronecker_delta
integer :: a,b,c,d,ab,cd
integer :: a0, aa
double precision :: e_ab, tmp_ab, delta_ac, tmp_cd
! Output variables
double precision,intent(out) :: Cpp(nVV,nVV)
! Define the chemical potential
! eF = e(nO) + e(nO+1)
eF = 0d0
! Build C matrix for the singlet manifold
!$OMP PARALLEL &
!$OMP SHARED(Cpp,lambda,ERI,e,eF,nC,nO,nBas,nR) &
!$OMP PRIVATE(c,d,a,b,ab,cd) &
!$OMP DEFAULT(NONE)
!$OMP DO
do c=nO+1,nBas-nR
do d=c+1,nBas-nR
cd = (c-(nO+1))*(nBas-nR-(nO+1)) - (c-1-(nO+1))*(c-(nO+1))/2 + d - c
do a=nO+1,nBas-nR
do b=a+1,nBas-nR
ab = (a-(nO+1))*(nBas-nR-(nO+1)) - (a-1-(nO+1))*(a-(nO+1))/2 + b - a
Cpp(ab,cd) = + (e(a) + e(b) - eF)*Kronecker_delta(a,c)*Kronecker_delta(b,d) &
+ lambda*(ERI(a,b,c,d) - ERI(a,b,d,c))
end do
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
end subroutine

54
src/LR/ppGLR_D.f90 Normal file
View File

@ -0,0 +1,54 @@
subroutine ppGLR_D(nBas,nC,nO,nV,nR,nOO,lambda,e,ERI,Dpp)
! Compute the D matrix of the pp channel
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nOO
double precision,intent(in) :: lambda
double precision,intent(in) :: e(nBas),ERI(nBas,nBas,nBas,nBas)
! Local variables
double precision :: eF
double precision,external :: Kronecker_delta
integer :: i,j,k,l,ij,kl
! Output variables
double precision,intent(out) :: Dpp(nOO,nOO)
! Define the chemical potential
! eF = e(nO) + e(nO+1)
eF = 0d0
! Build the D matrix for the spin-orbital basis
ij = 0
do i=nC+1,nO
do j=i+1,nO
ij = ij + 1
kl = 0
do k=nC+1,nO
do l=k+1,nO
kl = kl + 1
Dpp(ij,kl) = - (e(i) + e(j) - eF)*Kronecker_delta(i,k)*Kronecker_delta(j,l) &
+ lambda*(ERI(i,j,k,l) - ERI(i,j,l,k))
end do
end do
end do
end do
end subroutine

View File

@ -1,7 +1,4 @@
! ---
subroutine ppLR(TDA, nOO, nVV, Bpp, Cpp, Dpp, Om1, X1, Y1, Om2, X2, Y2, EcRPA)
subroutine ppLR(TDA,nOO,nVV,Bpp,Cpp,Dpp,Om1,X1,Y1,Om2,X2,Y2,EcRPA)
!
! Solve the pp-RPA linear eigenvalue problem

View File

@ -1,4 +1,4 @@
subroutine crGRPA(dotest,TDA,nBas,nC,nO,nV,nR,nS,ENuc,EGHF,ERI,dipole_int,eHF)
subroutine crGRPA(dotest,TDA,nOrb,nC,nO,nV,nR,nS,ENuc,EGHF,ERI,dipole_int,eHF)
! Crossed-ring channel of the random phase approximation
@ -11,7 +11,7 @@ subroutine crGRPA(dotest,TDA,nBas,nC,nO,nV,nR,nS,ENuc,EGHF,ERI,dipole_int,eHF)
logical,intent(in) :: dotest
logical,intent(in) :: TDA
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
@ -19,13 +19,12 @@ subroutine crGRPA(dotest,TDA,nBas,nC,nO,nV,nR,nS,ENuc,EGHF,ERI,dipole_int,eHF)
integer,intent(in) :: nS
double precision,intent(in) :: ENuc
double precision,intent(in) :: EGHF
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
double precision,intent(in) :: eHF(nOrb)
double precision,intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
double precision,intent(in) :: dipole_int(nOrb,nOrb,ncart)
! Local variables
integer :: ispin
logical :: dRPA
double precision,allocatable :: Aph(:,:)
double precision,allocatable :: Bph(:,:)
@ -59,14 +58,12 @@ subroutine crGRPA(dotest,TDA,nBas,nC,nO,nV,nR,nS,ENuc,EGHF,ERI,dipole_int,eHF)
allocate(Om(nS),XpY(nS,nS),XmY(nS,nS),Aph(nS,nS),Bph(nS,nS))
ispin = 3
call phLR_A(dRPA,nOrb,nC,nO,nV,nR,nS,-1d0,eHF,ERI,Aph)
if(.not.TDA) call phLR_B(dRPA,nOrb,nC,nO,nV,nR,nS,-1d0,ERI,Bph)
call phLR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nS,-1d0,eHF,ERI,Aph)
if(.not.TDA) call phLR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nS,-1d0,ERI,Bph)
call phLR(TDA,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
call phGLR(TDA,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
call print_excitation_energies('crRPA@GHF','spinorbital',nS,Om)
call phLR_transition_vectors(.true.,nBas,nC,nO,nV,nR,nS,dipole_int,Om,XpY,XmY)
call phLR_transition_vectors(.true.,nOrb,nC,nO,nV,nR,nS,dipole_int,Om,XpY,XmY)
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'

View File

@ -1,4 +1,4 @@
subroutine phGRPA(dotest,TDA,nBas,nC,nO,nV,nR,nS,ENuc,EGHF,ERI,dipole_int,eHF)
subroutine phGRPA(dotest,TDA,nOrb,nC,nO,nV,nR,nS,ENuc,EGHF,ERI,dipole_int,eHF)
! Perform a direct random phase approximation calculation
@ -11,7 +11,7 @@ subroutine phGRPA(dotest,TDA,nBas,nC,nO,nV,nR,nS,ENuc,EGHF,ERI,dipole_int,eHF)
logical,intent(in) :: dotest
logical,intent(in) :: TDA
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
@ -19,13 +19,12 @@ subroutine phGRPA(dotest,TDA,nBas,nC,nO,nV,nR,nS,ENuc,EGHF,ERI,dipole_int,eHF)
integer,intent(in) :: nS
double precision,intent(in) :: ENuc
double precision,intent(in) :: EGHF
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
double precision,intent(in) :: eHF(nOrb)
double precision,intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
double precision,intent(in) :: dipole_int(nOrb,nOrb,ncart)
! Local variables
integer :: ispin
logical :: dRPA
double precision :: lambda
@ -62,14 +61,12 @@ subroutine phGRPA(dotest,TDA,nBas,nC,nO,nV,nR,nS,ENuc,EGHF,ERI,dipole_int,eHF)
allocate(Om(nS),XpY(nS,nS),XmY(nS,nS),Aph(nS,nS),Bph(nS,nS))
ispin = 3
call phGLR_A(dRPA,nOrb,nC,nO,nV,nR,nS,lambda,eHF,ERI,Aph)
if(.not.TDA) call phGLR_B(dRPA,nOrb,nC,nO,nV,nR,nS,lambda,ERI,Bph)
call phLR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nS,lambda,eHF,ERI,Aph)
if(.not.TDA) call phLR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nS,lambda,ERI,Bph)
call phLR(TDA,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
call phGLR(TDA,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
call print_excitation_energies('phRPA@GHF','spinorbital',nS,Om)
call phLR_transition_vectors(.true.,nBas,nC,nO,nV,nR,nS,dipole_int,Om,XpY,XmY)
call phLR_transition_vectors(.true.,nOrb,nC,nO,nV,nR,nS,dipole_int,Om,XpY,XmY)
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'

View File

@ -1,4 +1,4 @@
subroutine phGRPAx(dotest,TDA,nBas,nC,nO,nV,nR,nS,ENuc,EGHF,ERI,dipole_int,eHF)
subroutine phGRPAx(dotest,TDA,nOrb,nC,nO,nV,nR,nS,ENuc,EGHF,ERI,dipole_int,eHF)
! Perform random phase approximation calculation with exchange (aka TDHF)
@ -11,7 +11,7 @@ subroutine phGRPAx(dotest,TDA,nBas,nC,nO,nV,nR,nS,ENuc,EGHF,ERI,dipole_int,eHF)
logical,intent(in) :: dotest
logical,intent(in) :: TDA
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
@ -19,13 +19,12 @@ subroutine phGRPAx(dotest,TDA,nBas,nC,nO,nV,nR,nS,ENuc,EGHF,ERI,dipole_int,eHF)
integer,intent(in) :: nS
double precision,intent(in) :: ENuc
double precision,intent(in) :: EGHF
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
double precision,intent(in) :: eHF(nOrb)
double precision,intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
double precision,intent(in) :: dipole_int(nOrb,nOrb,ncart)
! Local variables
integer :: ispin
logical :: dRPA
double precision,allocatable :: Aph(:,:)
double precision,allocatable :: Bph(:,:)
@ -59,14 +58,12 @@ subroutine phGRPAx(dotest,TDA,nBas,nC,nO,nV,nR,nS,ENuc,EGHF,ERI,dipole_int,eHF)
allocate(Om(nS),XpY(nS,nS),XmY(nS,nS),Aph(nS,nS),Bph(nS,nS))
ispin = 3
call phGLR_A(dRPA,nOrb,nC,nO,nV,nR,nS,1d0,eHF,ERI,Aph)
if(.not.TDA) call phLR_B(dRPA,nOrb,nC,nO,nV,nR,nS,1d0,ERI,Bph)
call phLR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,eHF,ERI,Aph)
if(.not.TDA) call phLR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,ERI,Bph)
call phLR(TDA,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
call phGLR(TDA,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
call print_excitation_energies('phRPAx@GHF','spinorbital',nS,Om)
call phLR_transition_vectors(.true.,nBas,nC,nO,nV,nR,nS,dipole_int,Om,XpY,XmY)
call phLR_transition_vectors(.true.,nOrb,nC,nO,nV,nR,nS,dipole_int,Om,XpY,XmY)
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'

View File

@ -23,7 +23,6 @@ subroutine ppGRPA(dotest,TDA,nBas,nC,nO,nV,nR,ENuc,EGHF,ERI,dipole_int,eHF)
! Local variables
integer :: ispin
integer :: nOO
integer :: nVV
double precision,allocatable :: Bpp(:,:)
@ -50,19 +49,17 @@ subroutine ppGRPA(dotest,TDA,nBas,nC,nO,nV,nR,ENuc,EGHF,ERI,dipole_int,eHF)
EcRPA = 0d0
ispin = 4
nOO = nO*(nO-1)/2
nVV = nV*(nV-1)/2
allocate(Om1(nVV),X1(nVV,nVV),Y1(nOO,nVV),Om2(nOO),X2(nVV,nOO),Y2(nOO,nOO), &
Bpp(nVV,nOO),Cpp(nVV,nVV),Dpp(nOO,nOO))
if(.not.TDA) call ppLR_B(ispin,nBas,nC,nO,nV,nR,nOO,nVV,1d0,ERI,Bpp)
call ppLR_C(ispin,nBas,nC,nO,nV,nR,nVV,1d0,eHF,ERI,Cpp)
call ppLR_D(ispin,nBas,nC,nO,nV,nR,nOO,1d0,eHF,ERI,Dpp)
if(.not.TDA) call ppGLR_B(nBas,nC,nO,nV,nR,nOO,nVV,1d0,ERI,Bpp)
call ppGLR_C(nBas,nC,nO,nV,nR,nVV,1d0,eHF,ERI,Cpp)
call ppGLR_D(nBas,nC,nO,nV,nR,nOO,1d0,eHF,ERI,Dpp)
call ppLR(TDA,nOO,nVV,Bpp,Cpp,Dpp,Om1,X1,Y1,Om2,X2,Y2,EcRPA)
call ppGLR(TDA,nOO,nVV,Bpp,Cpp,Dpp,Om1,X1,Y1,Om2,X2,Y2,EcRPA)
! call print_transition_vectors_pp(.true.,nBas,nC,nO,nV,nR,nOO,nVV,dipole_int,Om1,X1,Y1,Om2,X2,Y2)