10
1
mirror of https://github.com/pfloos/quack synced 2024-11-05 05:33:50 +01:00
This commit is contained in:
Pierre-Francois Loos 2020-03-15 08:24:15 +01:00
parent 6cff7ad77a
commit e14e8ac278
5 changed files with 816 additions and 2 deletions

329
src/eDFT/GOK_RKS.f90 Normal file
View File

@ -0,0 +1,329 @@
subroutine GOK_RKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nGrid,weight,maxSCF,thresh,max_diis,guess_type, &
nBas,AO,dAO,nO,nV,S,T,V,Hc,ERI,X,ENuc,Ew)
! Perform restricted Kohn-Sham calculation for ensembles
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: x_rung,c_rung
character(len=12),intent(in) :: x_DFA,c_DFA
integer,intent(in) :: nEns
double precision,intent(in) :: wEns(nEns)
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
integer,intent(in) :: maxSCF,max_diis,guess_type
double precision,intent(in) :: thresh
integer,intent(in) :: nBas
double precision,intent(in) :: AO(nBas,nGrid)
double precision,intent(in) :: dAO(ncart,nBas,nGrid)
integer,intent(in) :: nO,nV
double precision,intent(in) :: S(nBas,nBas)
double precision,intent(in) :: T(nBas,nBas)
double precision,intent(in) :: V(nBas,nBas)
double precision,intent(in) :: Hc(nBas,nBas)
double precision,intent(in) :: X(nBas,nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ENuc
! Local variables
integer :: xc_rung
integer :: nSCF,nBasSq
integer :: n_diis
double precision :: conv
double precision :: rcond
double precision :: ET
double precision :: EV
double precision :: EJ
double precision :: Ex
double precision :: Ec
double precision :: Ew
double precision,allocatable :: eps(:)
double precision,allocatable :: c(:,:)
double precision,allocatable :: cp(:,:)
double precision,allocatable :: J(:,:)
double precision,allocatable :: F(:,:)
double precision,allocatable :: Fp(:,:)
double precision,allocatable :: Fx(:,:)
double precision,allocatable :: FxHF(:,:)
double precision,allocatable :: Fc(:,:)
double precision,allocatable :: err(:,:)
double precision,allocatable :: err_diis(:,:)
double precision,allocatable :: F_diis(:,:)
double precision,external :: trace_matrix
double precision,external :: electron_number
double precision,allocatable :: Pw(:,:)
double precision,allocatable :: rhow(:)
double precision,allocatable :: drhow(:,:)
double precision :: nEl
double precision,allocatable :: P(:,:,:)
double precision,allocatable :: rho(:,:)
double precision,allocatable :: drho(:,:,:)
double precision :: E(nEns)
double precision :: Om(nEns)
integer :: iEns
! Hello world
write(*,*)
write(*,*)'************************************************'
write(*,*)'* Restricted Kohn-Sham calculation *'
write(*,*)'* *** for ensembles *** *'
write(*,*)'************************************************'
write(*,*)
! Useful stuff
nBasSq = nBas*nBas
!------------------------------------------------------------------------
! Rung of Jacob's ladder
!------------------------------------------------------------------------
! Select rung for exchange
write(*,*)
write(*,*) '*******************************************************************'
write(*,*) '* Exchange rung *'
write(*,*) '*******************************************************************'
call select_rung(x_rung,x_DFA)
! Select rung for correlation
write(*,*)
write(*,*) '*******************************************************************'
write(*,*) '* Correlation rung *'
write(*,*) '*******************************************************************'
call select_rung(c_rung,c_DFA)
! Overall rung
xc_rung = max(x_rung,c_rung)
! Memory allocation
allocate(eps(nBas),c(nBas,nBas),cp(nBas,nBas), &
J(nBas,nBas),F(nBas,nBas),Fp(nBas,nBas), &
Fx(nBas,nBas),FxHF(nBas,nBas),Fc(nBas,nBas),err(nBas,nBas), &
Pw(nBas,nBas),rhow(nGrid),drhow(ncart,nGrid), &
err_diis(nBasSq,max_diis),F_diis(nBasSq,max_diis), &
P(nBas,nBas,nEns),rho(nGrid,nEns),drho(ncart,nGrid,nEns))
! Guess coefficients and eigenvalues
if(guess_type == 1) then
F(:,:) = Hc(:,:)
else if(guess_type == 2) then
call random_number(F(:,:))
end if
! Initialization
nSCF = 0
conv = 1d0
nEl = 0d0
Ex = 0d0
Ec = 0d0
Fx(:,:) = 0d0
FxHF(:,:) = 0d0
Fc(:,:) = 0d0
n_diis = 0
F_diis(:,:) = 0d0
err_diis(:,:) = 0d0
!------------------------------------------------------------------------
! Main SCF loop
!------------------------------------------------------------------------
write(*,*)
write(*,*)'------------------------------------------------------------------------------------------'
write(*,'(1X,A1,1X,A3,1X,A1,1X,A16,1X,A1,1X,A16,1X,A1,1X,A16,1X,A1,1X,A10,1X,A1,1X,A10,1X,A1,1X)') &
'|','#','|','E(KS)','|','Ex(KS)','|','Ec(KS)','|','Conv','|','nEl','|'
write(*,*)'------------------------------------------------------------------------------------------'
do while(conv > thresh .and. nSCF < maxSCF)
! Increment
nSCF = nSCF + 1
! Transform Fock matrix in orthogonal basis
Fp(:,:) = matmul(transpose(X(:,:)),matmul(F(:,:),X(:,:)))
! Diagonalize Fock matrix to get eigenvectors and eigenvalues
cp(:,:) = Fp(:,:)
call diagonalize_matrix(nBas,cp(:,:),eps(:))
! Back-transform eigenvectors in non-orthogonal basis
c(:,:) = matmul(X(:,:),cp(:,:))
!------------------------------------------------------------------------
! Compute density matrix
!------------------------------------------------------------------------
call density_matrix(nBas,nEns,nO,c(:,:),P(:,:,:))
! Weight-dependent density matrix
Pw(:,:) = 0d0
do iEns=1,nEns
Pw(:,:) = Pw(:,:) + wEns(iEns)*P(:,:,iEns)
end do
!------------------------------------------------------------------------
! Compute one-electron density and its gradient if necessary
!------------------------------------------------------------------------
do iEns=1,nEns
call density(nGrid,nBas,P(:,:,iEns),AO(:,:),rho(:,iEns))
end do
! Weight-dependent one-electron density
rhow(:) = 0d0
do iEns=1,nEns
rhow(:) = rhow(:) + wEns(iEns)*rho(:,iEns)
end do
if(xc_rung > 1 .and. xc_rung /= 666) then
! Ground state density
do iEns=1,nEns
call gradient_density(nGrid,nBas,P(:,:,iEns),AO(:,:),dAO(:,:,:),drho(:,:,iEns))
end do
! Weight-dependent one-electron density
drhow(:,:) = 0d0
do iEns=1,nEns
drhow(:,:) = drhow(:,:) + wEns(iEns)*drho(:,:,iEns)
end do
end if
! Build Coulomb repulsion
call hartree_coulomb(nBas,Pw(:,:),ERI(:,:,:,:),J(:,:))
! Compute exchange potential
call exchange_potential(x_rung,x_DFA,nEns,wEns(:),nGrid,weight(:),nBas,Pw(:,:),ERI(:,:,:,:), &
AO(:,:),dAO(:,:,:),rhow(:),drhow(:,:),Fx(:,:),FxHF(:,:))
! Compute correlation potential
call correlation_potential(c_rung,c_DFA,nEns,wEns(:),nGrid,weight(:),nBas,AO(:,:),dAO(:,:,:),rhow(:),drhow(:,:),Fc(:,:))
! Build Fock operator
F(:,:) = Hc(:,:) + J(:,:) + J(:,:) + Fx(:,:) + Fc(:,:)
! Check convergence
err(:,:) = matmul(F(:,:),matmul(Pw(:,:),S(:,:))) - matmul(matmul(S(:,:),Pw(:,:)),F(:,:))
conv = maxval(abs(err(:,:)))
! DIIS extrapolation
n_diis = min(n_diis+1,max_diis)
call DIIS_extrapolation(rcond,nBasSq,nBasSq,n_diis,err_diis(:,:),F_diis(:,:),err(:,:),F(:,:))
! Reset DIIS if required
if(abs(rcond) < 1d-15) n_diis = 0
!------------------------------------------------------------------------
! Compute KS energy
!------------------------------------------------------------------------
! Kinetic energy
ET = trace_matrix(nBas,matmul(Pw(:,:),T(:,:)))
! Potential energy
EV = trace_matrix(nBas,matmul(Pw(:,:),V(:,:)))
! Coulomb energy
EJ = 0.5d0*trace_matrix(nBas,matmul(Pw(:,:),J(:,:)))
! Exchange energy
call exchange_energy(x_rung,x_DFA,nEns,wEns(:),nGrid,weight(:),nBas, &
Pw(:,:),FxHF(:,:),rhow(:),drhow(:,:),Ex)
! Correlation energy
call correlation_energy(c_rung,c_DFA,nEns,wEns(:),nGrid,weight(:),rhow(:),drhow(:,:),Ec)
! Total energy
Ew = ET + EV + EJ + Ex + Ec
! Check the grid accuracy by computing the number of electrons
nEl = electron_number(nGrid,weight(:),rhow(:))
! Dump results
write(*,'(1X,A1,1X,I3,1X,A1,1X,F16.10,1X,A1,1X,F16.10,1X,A1,1X,F16.10,1X,A1,1X,F10.6,1X,A1,1X,F10.6,1X,A1,1X)') &
'|',nSCF,'|',Ew + ENuc,'|',Ex,'|',Ec,'|',conv,'|',nEl,'|'
end do
write(*,*)'------------------------------------------------------------------------------------------'
!------------------------------------------------------------------------
! End of SCF loop
!------------------------------------------------------------------------
! Did it actually converge?
if(nSCF == maxSCF) then
write(*,*)
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)' Convergence failed '
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)
stop
end if
! Compute final KS energy
call print_RKS(nBas,nO,eps(:),c(:,:),ENuc,ET,EV,EJ,Ex,Ec,Ew)
!------------------------------------------------------------------------
! Compute individual energies from ensemble energy
!------------------------------------------------------------------------
call individual_energy(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns(:),nGrid,weight(:),nBas, &
AO(:,:),dAO(:,:,:),nO,nV,T(:,:),V(:,:),ERI(:,:,:,:),ENuc, &
Pw(:,:),rhow(:),drhow(:,:),J(:,:),Fx(:,:),FxHF(:,:), &
Fc(:,:),P(:,:,:),rho(:,:),drho(:,:,:),E(:),Om(:))
end subroutine GOK_RKS

363
src/eDFT/GOK_UKS.f90 Normal file
View File

@ -0,0 +1,363 @@
subroutine GOK_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nGrid,weight,maxSCF,thresh,max_diis,guess_type, &
nBas,AO,dAO,nO,nV,S,T,V,Hc,ERI,X,ENuc,Ew)
! Perform unrestricted Kohn-Sham calculation for ensembles
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: x_rung,c_rung
character(len=12),intent(in) :: x_DFA,c_DFA
integer,intent(in) :: nEns
double precision,intent(in) :: wEns(nEns)
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
integer,intent(in) :: maxSCF,max_diis,guess_type
double precision,intent(in) :: thresh
integer,intent(in) :: nBas
double precision,intent(in) :: AO(nBas,nGrid)
double precision,intent(in) :: dAO(ncart,nBas,nGrid)
integer,intent(in) :: nO(nspin),nV(nspin)
double precision,intent(in) :: S(nBas,nBas)
double precision,intent(in) :: T(nBas,nBas)
double precision,intent(in) :: V(nBas,nBas)
double precision,intent(in) :: Hc(nBas,nBas)
double precision,intent(in) :: X(nBas,nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ENuc
! Local variables
integer :: xc_rung
integer :: nSCF,nBasSq
integer :: n_diis
double precision :: conv
double precision :: rcond(nspin)
double precision :: ET(nspin)
double precision :: EV(nspin)
double precision :: EJ(nsp)
double precision :: Ex(nspin)
double precision :: Ec(nsp)
double precision :: Ew
double precision,allocatable :: eps(:,:)
double precision,allocatable :: c(:,:,:)
double precision,allocatable :: cp(:,:,:)
double precision,allocatable :: J(:,:,:)
double precision,allocatable :: F(:,:,:)
double precision,allocatable :: Fp(:,:,:)
double precision,allocatable :: Fx(:,:,:)
double precision,allocatable :: FxHF(:,:,:)
double precision,allocatable :: Fc(:,:,:)
double precision,allocatable :: err(:,:,:)
double precision,allocatable :: err_diis(:,:,:)
double precision,allocatable :: F_diis(:,:,:)
double precision,external :: trace_matrix
double precision,external :: electron_number
double precision,allocatable :: Pw(:,:,:)
double precision,allocatable :: rhow(:,:)
double precision,allocatable :: drhow(:,:,:)
double precision :: nEl(nspin)
double precision,allocatable :: P(:,:,:,:)
double precision,allocatable :: rho(:,:,:)
double precision,allocatable :: drho(:,:,:,:)
double precision :: E(nEns)
double precision :: Om(nEns)
integer :: ispin,iEns
! Hello world
write(*,*)
write(*,*)'************************************************'
write(*,*)'* Unrestricted Kohn-Sham calculation *'
write(*,*)'* *** for ensembles *** *'
write(*,*)'************************************************'
write(*,*)
! Useful stuff
nBasSq = nBas*nBas
!------------------------------------------------------------------------
! Rung of Jacob's ladder
!------------------------------------------------------------------------
! Select rung for exchange
write(*,*)
write(*,*) '*******************************************************************'
write(*,*) '* Exchange rung *'
write(*,*) '*******************************************************************'
call select_rung(x_rung,x_DFA)
! Select rung for correlation
write(*,*)
write(*,*) '*******************************************************************'
write(*,*) '* Correlation rung *'
write(*,*) '*******************************************************************'
call select_rung(c_rung,c_DFA)
! Overall rung
xc_rung = max(x_rung,c_rung)
! Memory allocation
allocate(eps(nBas,nspin),c(nBas,nBas,nspin),cp(nBas,nBas,nspin), &
J(nBas,nBas,nspin),F(nBas,nBas,nspin),Fp(nBas,nBas,nspin), &
Fx(nBas,nBas,nspin),FxHF(nBas,nBas,nspin),Fc(nBas,nBas,nspin),err(nBas,nBas,nspin), &
Pw(nBas,nBas,nspin),rhow(nGrid,nspin),drhow(ncart,nGrid,nspin), &
err_diis(nBasSq,max_diis,nspin),F_diis(nBasSq,max_diis,nspin), &
P(nBas,nBas,nspin,nEns),rho(nGrid,nspin,nEns),drho(ncart,nGrid,nspin,nEns))
! Guess coefficients and eigenvalues
if(guess_type == 1) then
do ispin=1,nspin
F(:,:,ispin) = Hc(:,:)
end do
else if(guess_type == 2) then
do ispin=1,nspin
call random_number(F(:,:,ispin))
end do
end if
! Initialization
nSCF = 0
conv = 1d0
nEl(:) = 0d0
Ex(:) = 0d0
Ec(:) = 0d0
Fx(:,:,:) = 0d0
FxHF(:,:,:) = 0d0
Fc(:,:,:) = 0d0
n_diis = 0
F_diis(:,:,:) = 0d0
err_diis(:,:,:) = 0d0
!------------------------------------------------------------------------
! Main SCF loop
!------------------------------------------------------------------------
write(*,*)
write(*,*)'------------------------------------------------------------------------------------------'
write(*,'(1X,A1,1X,A3,1X,A1,1X,A16,1X,A1,1X,A16,1X,A1,1X,A16,1X,A1,1X,A10,1X,A1,1X,A10,1X,A1,1X)') &
'|','#','|','E(KS)','|','Ex(KS)','|','Ec(KS)','|','Conv','|','nEl','|'
write(*,*)'------------------------------------------------------------------------------------------'
do while(conv > thresh .and. nSCF < maxSCF)
! Increment
nSCF = nSCF + 1
! Transform Fock matrix in orthogonal basis
do ispin=1,nspin
Fp(:,:,ispin) = matmul(transpose(X(:,:)),matmul(F(:,:,ispin),X(:,:)))
end do
! Diagonalize Fock matrix to get eigenvectors and eigenvalues
cp(:,:,:) = Fp(:,:,:)
do ispin=1,nspin
call diagonalize_matrix(nBas,cp(:,:,ispin),eps(:,ispin))
end do
! Back-transform eigenvectors in non-orthogonal basis
do ispin=1,nspin
c(:,:,ispin) = matmul(X(:,:),cp(:,:,ispin))
end do
!------------------------------------------------------------------------
! Compute density matrix
!------------------------------------------------------------------------
call density_matrix(nBas,nEns,nO(:),c(:,:,:),P(:,:,:,:))
! Weight-dependent density matrix
Pw(:,:,:) = 0d0
do iEns=1,nEns
Pw(:,:,:) = Pw(:,:,:) + wEns(iEns)*P(:,:,:,iEns)
end do
!------------------------------------------------------------------------
! Compute one-electron density and its gradient if necessary
!------------------------------------------------------------------------
do ispin=1,nspin
do iEns=1,nEns
call density(nGrid,nBas,P(:,:,ispin,iEns),AO(:,:),rho(:,ispin,iEns))
end do
end do
! Weight-dependent one-electron density
rhow(:,:) = 0d0
do iEns=1,nEns
rhow(:,:) = rhow(:,:) + wEns(iEns)*rho(:,:,iEns)
end do
if(xc_rung > 1 .and. xc_rung /= 666) then
! Ground state density
do ispin=1,nspin
do iEns=1,nEns
! call gradient_density(nGrid,nBas,P(:,:,ispin,iEns),AO(:,:),dAO(:,:,:),drho(:,:,ispin,iEns))
end do
end do
! Weight-dependent one-electron density
drhow(:,:,:) = 0d0
do iEns=1,nEns
drhow(:,:,:) = drhow(:,:,:) + wEns(iEns)*drho(:,:,:,iEns)
end do
end if
! Build Coulomb repulsion
do ispin=1,nspin
call hartree_coulomb(nBas,Pw(:,:,ispin),ERI(:,:,:,:),J(:,:,ispin))
end do
! Compute exchange potential
do ispin=1,nspin
call exchange_potential(x_rung,x_DFA,nEns,wEns(:),nGrid,weight(:),nBas,Pw(:,:,ispin),ERI(:,:,:,:), &
AO(:,:),dAO(:,:,:),rhow(:,ispin),drhow(:,:,ispin),Fx(:,:,ispin),FxHF(:,:,ispin))
end do
! Compute correlation potential
call correlation_potential(c_rung,c_DFA,nEns,wEns(:),nGrid,weight(:),nBas,AO(:,:),dAO(:,:,:),rhow(:,:),drhow(:,:,:),Fc(:,:,:))
! Build Fock operator
do ispin=1,nspin
F(:,:,ispin) = Hc(:,:) + J(:,:,ispin) + J(:,:,mod(ispin,2)+1) + Fx(:,:,ispin) + Fc(:,:,ispin)
end do
! Check convergence
do ispin=1,nspin
err(:,:,ispin) = matmul(F(:,:,ispin),matmul(Pw(:,:,ispin),S(:,:))) - matmul(matmul(S(:,:),Pw(:,:,ispin)),F(:,:,ispin))
end do
conv = maxval(abs(err(:,:,:)))
! DIIS extrapolation
n_diis = min(n_diis+1,max_diis)
do ispin=1,nspin
call DIIS_extrapolation(rcond(ispin),nBasSq,nBasSq,n_diis, &
err_diis(:,:,ispin),F_diis(:,:,ispin),err(:,:,ispin),F(:,:,ispin))
end do
! Reset DIIS if required
if(minval(rcond(:)) < 1d-15) n_diis = 0
!------------------------------------------------------------------------
! Compute KS energy
!------------------------------------------------------------------------
! Kinetic energy
do ispin=1,nspin
ET(ispin) = trace_matrix(nBas,matmul(Pw(:,:,ispin),T(:,:)))
end do
! Potential energy
do ispin=1,nspin
EV(ispin) = trace_matrix(nBas,matmul(Pw(:,:,ispin),V(:,:)))
end do
! Coulomb energy
EJ(1) = 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,1)))
EJ(2) = trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,2)))
EJ(3) = 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,2)))
! Exchange energy
do ispin=1,nspin
call exchange_energy(x_rung,x_DFA,nEns,wEns(:),nGrid,weight(:),nBas, &
Pw(:,:,ispin),FxHF(:,:,ispin),rhow(:,ispin),drhow(:,:,ispin),Ex(ispin))
end do
! Correlation energy
call correlation_energy(c_rung,c_DFA,nEns,wEns(:),nGrid,weight(:),rhow(:,:),drhow(:,:,:),Ec)
! Total energy
Ew = sum(ET(:)) + sum(EV(:)) + sum(EJ(:)) + sum(Ex(:)) + sum(Ec(:))
! Check the grid accuracy by computing the number of electrons
do ispin=1,nspin
nEl(ispin) = electron_number(nGrid,weight(:),rhow(:,ispin))
end do
! Dump results
write(*,'(1X,A1,1X,I3,1X,A1,1X,F16.10,1X,A1,1X,F16.10,1X,A1,1X,F16.10,1X,A1,1X,F10.6,1X,A1,1X,F10.6,1X,A1,1X)') &
'|',nSCF,'|',Ew + ENuc,'|',sum(Ex(:)),'|',sum(Ec(:)),'|',conv,'|',sum(nEl(:)),'|'
end do
write(*,*)'------------------------------------------------------------------------------------------'
!------------------------------------------------------------------------
! End of SCF loop
!------------------------------------------------------------------------
! Did it actually converge?
if(nSCF == maxSCF) then
write(*,*)
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)' Convergence failed '
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)
stop
end if
! Compute final KS energy
call print_UKS(nBas,nO(:),eps(:,:),c(:,:,:),ENuc,ET(:),EV(:),EJ(:),Ex(:),Ec(:),Ew)
!------------------------------------------------------------------------
! Compute individual energies from ensemble energy
!------------------------------------------------------------------------
call individual_energy(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns(:),nGrid,weight(:),nBas, &
AO(:,:),dAO(:,:,:),nO(:),nV(:),T(:,:),V(:,:),ERI(:,:,:,:),ENuc, &
Pw(:,:,:),rhow(:,:),drhow(:,:,:),J(:,:,:),Fx(:,:,:),FxHF(:,:,:), &
Fc(:,:,:),P(:,:,:,:),rho(:,:,:),drho(:,:,:,:),E(:),Om(:))
end subroutine GOK_UKS

View File

@ -0,0 +1,50 @@
subroutine RMFL20_lda_exchange_energy(nEns,wEns,nGrid,weight,rho,Ex)
! Compute restricted version of Marut-Fromager-Loos weight-dependent LDA exchange energy
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nEns
double precision,intent(in) :: wEns(nEns)
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
double precision,intent(in) :: rho(nGrid)
! Local variables
integer :: iG
double precision :: CxLDA
double precision :: Cx2
double precision :: Cxw
double precision :: r
! Output variables
double precision :: Ex
! Cx coefficient for Slater LDA exchange
CxLDA = -(4d0/3d0)*(1d0/pi)**(1d0/3d0)
Cx2 = -(176d0/105d0)*(1d0/pi)**(1d0/3d0)
Cxw = (1d0 - wEns(2))*CxLDA + wEns(2)*(Cx2 - CxLDA)
! Compute LDA exchange energy
Ex = 0d0
do iG=1,nGrid
r = max(0d0,rho(iG))
if(r > threshold) then
Ex = Ex + weight(iG)*Cxw*r**(4d0/3d0)
endif
enddo
end subroutine RMFL20_lda_exchange_energy

72
src/eDFT/print_RKS.f90 Normal file
View File

@ -0,0 +1,72 @@
subroutine print_RKS(nBas,nO,eps,c,ENuc,ET,EV,EJ,Ex,Ec,Ew)
! Print one- and two-electron energies and other stuff for KS calculation
implicit none
include 'parameters.h'
integer,intent(in) :: nBas
integer,intent(in) :: nO
double precision,intent(in) :: eps(nBas)
double precision,intent(in) :: c(nBas,nBas)
double precision,intent(in) :: ENuc
double precision,intent(in) :: ET
double precision,intent(in) :: EV
double precision,intent(in) :: EJ
double precision,intent(in) :: Ex
double precision,intent(in) :: Ec
double precision,intent(in) :: Ew
integer :: HOMO
integer :: LUMO
double precision :: Gap
! HOMO, LUMO, and Gap
HOMO = nO
LUMO = HOMO + 1
Gap = eps(LUMO) - eps(HOMO)
! Dump results
write(*,*)
write(*,'(A60)') '-------------------------------------------------'
write(*,'(A40)') ' Summary '
write(*,'(A60)') '-------------------------------------------------'
write(*,'(A40,1X,F16.10,A3)') ' One-electron energy: ',ET + EV,' au'
write(*,'(A40,1X,F16.10,A3)') ' Kinetic energy: ',ET,' au'
write(*,'(A40,1X,F16.10,A3)') ' Potential energy: ',EV,' au'
write(*,'(A60)') '-------------------------------------------------'
write(*,'(A40,1X,F16.10,A3)') ' Two-electron energy: ',EJ + Ex + Ec,' au'
write(*,'(A40,1X,F16.10,A3)') ' Coulomb energy: ',EJ,' au'
write(*,'(A40,1X,F16.10,A3)') ' Exchange energy: ',Ex,' au'
write(*,'(A40,1X,F16.10,A3)') ' Exchange energy: ',Ex,' au'
write(*,'(A40,1X,F16.10,A3)') ' Correlation energy: ',Ec,' au'
write(*,'(A60)') '-------------------------------------------------'
write(*,'(A40,1X,F16.10,A3)') ' Electronic energy: ',Ew,' au'
write(*,'(A40,1X,F16.10,A3)') ' Nuclear repulsion: ',ENuc,' au'
write(*,'(A40,1X,F16.10,A3)') ' Kohn-Sham energy: ',Ew + ENuc,' au'
write(*,'(A60)') '-------------------------------------------------'
write(*,'(A40,F13.6,A3)') ' KS HOMO energy:',eps(HOMO)*HatoeV,' eV'
write(*,'(A40,F13.6,A3)') ' KS LUMO energy:',eps(LUMO)*HatoeV,' eV'
write(*,'(A40,F13.6,A3)') ' KS HOMO-LUMO gap:',Gap*HatoeV,' eV'
write(*,'(A60)') '-------------------------------------------------'
write(*,*)
! Print results
write(*,'(A50)') '-----------------------------------------'
write(*,'(A50)') ' Kohn-Sham orbital coefficients '
write(*,'(A50)') '-----------------------------------------'
call matout(nBas,nBas,c(:,:))
write(*,*)
write(*,'(A50)') '---------------------------------------'
write(*,'(A50)') ' Kohn-Sham orbital energies '
write(*,'(A50)') '---------------------------------------'
call matout(nBas,1,eps(:))
write(*,*)
end subroutine print_RKS

View File

@ -1,4 +1,4 @@
subroutine print_KS(nBas,nO,eps,c,ENuc,ET,EV,EJ,Ex,Ec,Ew) subroutine print_UKS(nBas,nO,eps,c,ENuc,ET,EV,EJ,Ex,Ec,Ew)
! Print one- and two-electron energies and other stuff for KS calculation ! Print one- and two-electron energies and other stuff for KS calculation
@ -99,4 +99,4 @@ subroutine print_KS(nBas,nO,eps,c,ENuc,ET,EV,EJ,Ex,Ec,Ew)
call matout(nBas,1,eps(:,2)) call matout(nBas,1,eps(:,2))
write(*,*) write(*,*)
end subroutine print_KS end subroutine print_UKS