10
1
mirror of https://github.com/pfloos/quack synced 2025-01-10 13:08:19 +01:00

cleaning up collinearity test

This commit is contained in:
Pierre-Francois Loos 2023-11-18 22:40:07 +01:00
parent 395f1abf9a
commit dd164400fb
2 changed files with 186 additions and 232 deletions

View File

@ -35,8 +35,6 @@ subroutine print_GHF(nBas,nBas2,nO,eHF,C,P,S,ENuc,ET,EV,EJ,EK,EGHF,dipole)
double precision :: Gap double precision :: Gap
double precision :: Sx,Sy,Sz double precision :: Sx,Sy,Sz
double precision :: SmSp,SpSm,Sz2,S2 double precision :: SmSp,SpSm,Sz2,S2
! double precision :: na, nb
! double precision :: nonco_z, contam_uhf, xy_perp, contam_ghf
double precision,allocatable :: Ca(:,:) double precision,allocatable :: Ca(:,:)
double precision,allocatable :: Cb(:,:) double precision,allocatable :: Cb(:,:)
@ -44,16 +42,6 @@ subroutine print_GHF(nBas,nBas2,nO,eHF,C,P,S,ENuc,ET,EV,EJ,EK,EGHF,dipole)
double precision,allocatable :: Pab(:,:) double precision,allocatable :: Pab(:,:)
double precision,allocatable :: Pba(:,:) double precision,allocatable :: Pba(:,:)
double precision,allocatable :: Pbb(:,:) double precision,allocatable :: Pbb(:,:)
double precision,allocatable :: tmp(:,:)
double precision,allocatable :: Mx(:,:)
double precision,allocatable :: My(:,:)
double precision,allocatable :: Mz(:,:)
double precision,allocatable :: PP(:,:)
double precision :: T(3,3)
double precision :: vec(3,3)
double precision :: val(3)
double precision :: lambda
double precision,external :: trace_matrix double precision,external :: trace_matrix
@ -115,47 +103,7 @@ subroutine print_GHF(nBas,nBas2,nO,eHF,C,P,S,ENuc,ET,EV,EJ,EK,EGHF,dipole)
S2 = Sz2 + 0.5d0*(SpSm + SmSp) S2 = Sz2 + 0.5d0*(SpSm + SmSp)
call print_GHF_spin(nBas, nBas2, nO, C, S)
! deallocate(Paa,Pab,Pba,Pbb)
! Check collinearity and coplanarity
! allocate(PP(nO,nO),Mx(nO,nO),My(nO,nO),Mz(nO,nO))
! PP(:,:) = 0.5d0*(Paa(:,:) + Pbb(:,:))
! Mx(:,:) = 0.5d0*(Pba(:,:) + Pab(:,:))
! My(:,:) = 0.5d0*(Pba(:,:) - Pab(:,:))
! Mz(:,:) = 0.5d0*(Paa(:,:) - Pbb(:,:))
! T(1,1) = trace_matrix(nO,matmul(Mx,Mx))
! T(1,2) = trace_matrix(nO,matmul(Mx,My))
! T(1,3) = trace_matrix(nO,matmul(Mx,Mz))
! T(2,1) = trace_matrix(nO,matmul(My,Mx))
! T(2,2) = trace_matrix(nO,matmul(My,My))
! T(2,3) = trace_matrix(nO,matmul(My,Mz))
! T(3,1) = trace_matrix(nO,matmul(Mz,Mx))
! T(3,2) = trace_matrix(nO,matmul(Mz,My))
! T(3,3) = trace_matrix(nO,matmul(Mz,Mz))
! lambda = trace_matrix(nO,PP - matmul(PP,PP))
! write(*,'(A,F10.6)') 'Tr(P - P^2) = ',lambda
! vec(:,:) = T(:,:)
! call diagonalize_matrix(3,vec,val)
! write(*,'(A,3F10.6)') 'Eigenvalues of T = ',val
! T(1,1) = - T(1,1) + lambda
! T(2,2) = - T(2,2) + lambda
! T(3,3) = - T(3,3) + lambda
! vec(:,:) = T(:,:)
! call diagonalize_matrix(3,vec,val)
! write(*,'(A,3F10.6)') 'Eigenvalues of A = ',val
! deallocate(PP,Mx,My,Mz)
! Dump results ! Dump results
@ -208,183 +156,4 @@ subroutine print_GHF(nBas,nBas2,nO,eHF,C,P,S,ENuc,ET,EV,EJ,EK,EGHF,dipole)
call vecout(nBas2,eHF) call vecout(nBas2,eHF)
write(*,*) write(*,*)
call print_GHFspin(nBas, nBas2, nO, C, S)
end subroutine end subroutine
! ---
subroutine print_GHFspin(nBas, nBas2, nO, C, S)
implicit none
integer, intent(in) :: nBas, nBas2, nO
double precision, intent(in) :: C(nBas2,nBas2), S(nBas,nBas)
integer :: i, j
double precision :: Na, Nb
double precision :: nonco_z, contam_ghf
double precision :: S2, Sz, Sz2
complex*16 :: Sc_x, Sc_y, Sc_z
complex*16 :: Sc_xx, Sc_xy, Sc_xz
complex*16 :: Sc_yx, Sc_yy, Sc_yz
complex*16 :: Sc_zx, Sc_zy, Sc_zz
double precision, allocatable :: Ca(:,:), Cb(:,:)
double precision, allocatable :: Paa(:,:), Pab(:,:), Pba(:,:), Pbb(:,:)
double precision, allocatable :: Mc(:,:), Eigc(:)
print *, ' Spin properties for GHF WF:'
allocate(Ca(nBas,nO), Cb(nBas,nO))
do i = 1, nO
do j = 1, nBas
Ca(j,i) = C( j,i)
Cb(j,i) = C(nBas+j,i)
enddo
enddo
! TODO DGEMM
allocate(Paa(nO,nO), Pab(nO,nO), Pba(nO,nO), Pbb(nO,nO))
Paa = matmul(transpose(Ca), matmul(S, Ca))
Pab = matmul(transpose(Ca), matmul(S, Cb))
Pba = matmul(transpose(Cb), matmul(S, Ca))
Pbb = matmul(transpose(Cb), matmul(S, Cb))
deallocate(Ca, Cb)
Na = 0.d0
Nb = 0.d0
do i = 1, nO
Na = Na + Paa(i,i)
Nb = Nb + Pbb(i,i)
enddo
nonco_z = dble(nO)
do j = 1, nO
do i = 1, nO
nonco_z = nonco_z - (Paa(i,j) - Pbb(i,j))**2
enddo
enddo
nonco_z = 0.25d0 * nonco_z
contam_ghf = 0.d0
do j = 1, nO
do i = 1, nO
contam_ghf = contam_ghf + (Pab(i,i)*Pba(j,j) - Pab(i,j)*Pba(j,i))
enddo
enddo
Sz = 0.5d0 * (Na - Nb)
Sz2 = Sz*Sz + nonco_z
S2 = Sz2 + 0.5d0 * (Na + Nb) + contam_ghf
print *, 'Sz, Sz^2 = ', Sz, Sz2
print *, 'S^2 = ', S2
! --- --- --- --- --- --- --- --- ---
! Compute <Si> & <SiSj> for all i, j
! --- --- --- --- --- --- --- --- ---
Sc_x = (0.d0,0.d0)
Sc_y = (0.d0,0.d0)
Sc_z = (0.d0,0.d0)
do i = 1, nO
Sc_x = Sc_x + (+0.5d0,0.d0) * (Pab(i,i) + Pba(i,i))
Sc_y = Sc_y + (0.d0,-0.5d0) * (Pab(i,i) - Pba(i,i))
Sc_z = Sc_z + (+0.5d0,0.d0) * (Paa(i,i) - Pbb(i,i))
enddo
print *, " < Sx > = ", Sc_x
print *, " < Sy > = ", Sc_y
print *, " < Sz > = ", Sc_z
Sc_xx = Sc_x * Sc_x + 0.25d0*dble(nO)*(1.d0,0.d0)
Sc_yy = Sc_y * Sc_y + 0.25d0*dble(nO)*(1.d0,0.d0)
Sc_zz = Sc_z * Sc_z + 0.25d0*dble(nO)*(1.d0,0.d0)
do i = 1, nO
do j = 1, nO
Sc_xx = Sc_xx - zabs((+0.5d0,0.d0) * (Pab(i,j) + Pba(i,j)))**2
Sc_yy = Sc_yy - zabs((0.d0,-0.5d0) * (Pab(i,j) - Pba(i,j)))**2
Sc_zz = Sc_zz - zabs((+0.5d0,0.d0) * (Paa(i,j) - Pbb(i,j)))**2
enddo
enddo
print *, " < Sx^2 > = ", Sc_xx
print *, " < Sy^2 > = ", Sc_yy
print *, " < Sz^2 > = ", Sc_zz
Sc_xy = Sc_x * Sc_y
Sc_yx = Sc_x * Sc_y
do i = 1, nO
Sc_xy = Sc_xy + (0.d0,0.5d0) * (+0.5d0,0.0d0) * (Paa(i,i) - Pbb(i,i))
Sc_yx = Sc_yx - (0.d0,0.5d0) * (+0.5d0,0.0d0) * (Paa(i,i) - Pbb(i,i))
do j = 1, nO
Sc_xy = Sc_xy - (+0.5d0,0.d0) * (Pab(i,j) + Pba(i,j)) * (0.d0,-0.5d0) * (Pab(j,i) - Pba(j,i))
Sc_yx = Sc_yx - (+0.5d0,0.d0) * (Pab(j,i) + Pba(j,i)) * (0.d0,-0.5d0) * (Pab(i,j) - Pba(i,j))
enddo
enddo
print *, " < Sx Sy > = ", Sc_xy
print *, " < Sy Sx > = ", Sc_yx
Sc_xz = Sc_x * Sc_z
Sc_zx = Sc_x * Sc_z
do i = 1, nO
Sc_xz = Sc_xz - (0.d0,0.5d0) * (0.d0,-0.5d0) * (Pab(i,i) - Pba(i,i))
Sc_zx = Sc_zx + (0.d0,0.5d0) * (0.d0,-0.5d0) * (Pab(i,i) - Pba(i,i))
do j = 1, nO
Sc_xz = Sc_xz - (+0.5d0,0.d0) * (Pab(i,j) + Pba(i,j)) * (+0.5d0,0.d0) * (Paa(j,i) - Pbb(j,i))
Sc_zx = Sc_zx - (+0.5d0,0.d0) * (Pab(j,i) + Pba(j,i)) * (+0.5d0,0.d0) * (Paa(i,j) - Pbb(i,j))
enddo
enddo
print *, " < Sx Sz > = ", Sc_xz
print *, " < Sz Sx > = ", Sc_zx
Sc_yz = Sc_y * Sc_z
Sc_zy = Sc_y * Sc_z
do i = 1, nO
Sc_yz = Sc_yz + (0.d0,0.5d0) * (+0.5d0,0.d0) * (Pab(i,i) + Pba(i,i))
Sc_zy = Sc_zy - (0.d0,0.5d0) * (+0.5d0,0.d0) * (Pab(i,i) + Pba(i,i))
do j = 1, nO
Sc_yz = Sc_yz - (0.d0,-0.5d0) * (Pab(i,j) - Pba(i,j)) * (+0.5d0,0.d0) * (Paa(j,i) - Pbb(j,i))
Sc_zy = Sc_zy - (0.d0,-0.5d0) * (Pab(j,i) - Pba(j,i)) * (+0.5d0,0.d0) * (Paa(i,j) - Pbb(i,j))
enddo
enddo
print *, " < Sy Sz > = ", Sc_yz
print *, " < Sz Sy > = ", Sc_zy
! --- --- --- --- --- --- --- --- ---
! --- --- --- --- --- --- --- --- ---
! calculate the axis of Collinearity
! --- --- --- --- --- --- --- --- ---
allocate(Mc(3,3), Eigc(3))
Mc(:,:) = 0.d0
Mc(1,1) = 0.25d0 * dble(nO)
Mc(2,2) = 0.25d0 * dble(nO)
Mc(3,3) = 0.25d0 * dble(nO)
do j = 1, nO
do i = 1, nO
Mc(1,1) = Mc(1,1) - 0.25d0 * (Pba(i,j) + Pab(i,j))**2
Mc(2,2) = Mc(2,2) - 0.25d0 * (Pba(i,j) - Pab(i,j))**2
Mc(3,3) = Mc(3,3) - 0.25d0 * (Paa(i,j) - Pbb(i,j))**2
Mc(1,3) = Mc(1,3) - 0.25d0 * (Pab(i,j) + Pba(i,j))*(Paa(j,i) - Pbb(j,i))
enddo
enddo
Mc(3,1) = Mc(1,3)
print *, " The Spin matrix is:", Mc
call diagonalize_matrix(3, Mc, Eigc)
print *, ' eigenvalues of Collinearity matrix:', Eigc
deallocate(Mc, Eigc)
! --- --- --- --- --- --- --- --- ---
! --- --- --- --- --- --- --- --- ---
deallocate(Paa, Pab, Pba, Pbb)
end

185
src/HF/print_GHF_spin.f90 Normal file
View File

@ -0,0 +1,185 @@
subroutine print_GHF_spin(nBas,nBas2,nO,C,S)
implicit none
integer,intent(in) :: nBas
integer,intent(in) :: nBas2
integer,intent(in) :: nO
double precision, intent(in) :: C(nBas2,nBas2)
double precision, intent(in) :: S(nBas,nBas)
integer :: i, j
double precision :: Na, Nb
double precision :: nonco_z, contam_ghf
double precision :: S2, Sz, Sz2
complex*16 :: Sc_x, Sc_y, Sc_z
complex*16 :: Sc_xx, Sc_xy, Sc_xz
complex*16 :: Sc_yx, Sc_yy, Sc_yz
complex*16 :: Sc_zx, Sc_zy, Sc_zz
double precision, allocatable :: Ca(:,:), Cb(:,:)
double precision, allocatable :: Paa(:,:), Pab(:,:), Pba(:,:), Pbb(:,:)
double precision, allocatable :: Mc(:,:), Eigc(:)
write(*,*)
write(*,*) '****************************************'
write(*,*) '* Spin properties of GHF wave function *'
write(*,*) '****************************************'
write(*,*)
allocate(Ca(nBas,nO), Cb(nBas,nO))
do i = 1, nO
do j = 1, nBas
Ca(j,i) = C( j,i)
Cb(j,i) = C(nBas+j,i)
enddo
enddo
! TODO DGEMM
allocate(Paa(nO,nO), Pab(nO,nO), Pba(nO,nO), Pbb(nO,nO))
Paa = matmul(transpose(Ca), matmul(S, Ca))
Pab = matmul(transpose(Ca), matmul(S, Cb))
Pba = matmul(transpose(Cb), matmul(S, Ca))
Pbb = matmul(transpose(Cb), matmul(S, Cb))
deallocate(Ca, Cb)
Na = 0.d0
Nb = 0.d0
do i = 1, nO
Na = Na + Paa(i,i)
Nb = Nb + Pbb(i,i)
enddo
nonco_z = dble(nO)
do j = 1, nO
do i = 1, nO
nonco_z = nonco_z - (Paa(i,j) - Pbb(i,j))**2
enddo
enddo
nonco_z = 0.25d0 * nonco_z
contam_ghf = 0.d0
do j = 1, nO
do i = 1, nO
contam_ghf = contam_ghf + (Pab(i,i)*Pba(j,j) - Pab(i,j)*Pba(j,i))
enddo
enddo
Sz = 0.5d0 * (Na - Nb)
Sz2 = Sz*Sz + nonco_z
S2 = Sz2 + 0.5d0 * (Na + Nb) + contam_ghf
write(*,'(A15,2F10.6)') ' < Sz > = ', Sz
write(*,'(A15,2F10.6)') ' < Sz^2 > = ', Sz2
write(*,'(A15,2F10.6)') ' < S^2 > = ', S2
write(*,*)
! --- --- --- --- --- --- --- --- ---
! Compute <Si> & <SiSj> for all i, j
! --- --- --- --- --- --- --- --- ---
Sc_x = (0.d0,0.d0)
Sc_y = (0.d0,0.d0)
Sc_z = (0.d0,0.d0)
do i = 1, nO
Sc_x = Sc_x + (+0.5d0,0.d0) * (Pab(i,i) + Pba(i,i))
Sc_y = Sc_y + (0.d0,-0.5d0) * (Pab(i,i) - Pba(i,i))
Sc_z = Sc_z + (+0.5d0,0.d0) * (Paa(i,i) - Pbb(i,i))
enddo
write(*,'(A15,2F10.6)') ' < Sx > = ',Sc_x
write(*,'(A15,2F10.6)') ' < Sy > = ',Sc_y
write(*,'(A15,2F10.6)') ' < Sz > = ',Sc_z
write(*,*)
Sc_xx = Sc_x * Sc_x + 0.25d0*dble(nO)*(1.d0,0.d0)
Sc_yy = Sc_y * Sc_y + 0.25d0*dble(nO)*(1.d0,0.d0)
Sc_zz = Sc_z * Sc_z + 0.25d0*dble(nO)*(1.d0,0.d0)
do i = 1, nO
do j = 1, nO
Sc_xx = Sc_xx - zabs((+0.5d0,0.d0) * (Pab(i,j) + Pba(i,j)))**2
Sc_yy = Sc_yy - zabs((0.d0,-0.5d0) * (Pab(i,j) - Pba(i,j)))**2
Sc_zz = Sc_zz - zabs((+0.5d0,0.d0) * (Paa(i,j) - Pbb(i,j)))**2
enddo
enddo
write(*,'(A15,2F10.6)') ' < Sx^2 > = ',Sc_xx
write(*,'(A15,2F10.6)') ' < Sy^2 > = ',Sc_yy
write(*,'(A15,2F10.6)') ' < Sz^2 > = ',Sc_zz
write(*,*)
Sc_xy = Sc_x * Sc_y
Sc_yx = Sc_x * Sc_y
do i = 1, nO
Sc_xy = Sc_xy + (0.d0,0.5d0) * (+0.5d0,0.0d0) * (Paa(i,i) - Pbb(i,i))
Sc_yx = Sc_yx - (0.d0,0.5d0) * (+0.5d0,0.0d0) * (Paa(i,i) - Pbb(i,i))
do j = 1, nO
Sc_xy = Sc_xy - (+0.5d0,0.d0) * (Pab(i,j) + Pba(i,j)) * (0.d0,-0.5d0) * (Pab(j,i) - Pba(j,i))
Sc_yx = Sc_yx - (+0.5d0,0.d0) * (Pab(j,i) + Pba(j,i)) * (0.d0,-0.5d0) * (Pab(i,j) - Pba(i,j))
enddo
enddo
write(*,'(A15,2F10.6)') ' < Sx Sy > = ',Sc_xy
write(*,'(A15,2F10.6)') ' < Sy Sx > = ',Sc_yx
Sc_xz = Sc_x * Sc_z
Sc_zx = Sc_x * Sc_z
do i = 1, nO
Sc_xz = Sc_xz - (0.d0,0.5d0) * (0.d0,-0.5d0) * (Pab(i,i) - Pba(i,i))
Sc_zx = Sc_zx + (0.d0,0.5d0) * (0.d0,-0.5d0) * (Pab(i,i) - Pba(i,i))
do j = 1, nO
Sc_xz = Sc_xz - (+0.5d0,0.d0) * (Pab(i,j) + Pba(i,j)) * (+0.5d0,0.d0) * (Paa(j,i) - Pbb(j,i))
Sc_zx = Sc_zx - (+0.5d0,0.d0) * (Pab(j,i) + Pba(j,i)) * (+0.5d0,0.d0) * (Paa(i,j) - Pbb(i,j))
enddo
enddo
write(*,'(A15,2F10.6)') ' < Sx Sz > = ',Sc_xz
write(*,'(A15,2F10.6)') ' < Sz Sx > = ',Sc_zx
Sc_yz = Sc_y * Sc_z
Sc_zy = Sc_y * Sc_z
do i = 1, nO
Sc_yz = Sc_yz + (0.d0,0.5d0) * (+0.5d0,0.d0) * (Pab(i,i) + Pba(i,i))
Sc_zy = Sc_zy - (0.d0,0.5d0) * (+0.5d0,0.d0) * (Pab(i,i) + Pba(i,i))
do j = 1, nO
Sc_yz = Sc_yz - (0.d0,-0.5d0) * (Pab(i,j) - Pba(i,j)) * (+0.5d0,0.d0) * (Paa(j,i) - Pbb(j,i))
Sc_zy = Sc_zy - (0.d0,-0.5d0) * (Pab(j,i) - Pba(j,i)) * (+0.5d0,0.d0) * (Paa(i,j) - Pbb(i,j))
enddo
enddo
write(*,'(A15,2F10.6)') ' < Sy Sz > = ',Sc_yz
write(*,'(A15,2F10.6)') ' < Sz Sy > = ', Sc_zy
write(*,*)
! --- --- --- --- --- !
! Collinearity Test !
! --- --- --- --- --- !
allocate(Mc(3,3), Eigc(3))
Mc(:,:) = 0.d0
Mc(1,1) = 0.25d0 * dble(nO)
Mc(2,2) = 0.25d0 * dble(nO)
Mc(3,3) = 0.25d0 * dble(nO)
do j = 1, nO
do i = 1, nO
Mc(1,1) = Mc(1,1) - 0.25d0 * (Pba(i,j) + Pab(i,j))**2
Mc(2,2) = Mc(2,2) - 0.25d0 * (Pba(i,j) - Pab(i,j))**2
Mc(3,3) = Mc(3,3) - 0.25d0 * (Paa(i,j) - Pbb(i,j))**2
Mc(1,3) = Mc(1,3) - 0.25d0 * (Pab(i,j) + Pba(i,j))*(Paa(j,i) - Pbb(j,i))
enddo
enddo
Mc(3,1) = Mc(1,3)
write(*,*) 'The collinearity matrix is'
call matout(3,3,Mc)
call diagonalize_matrix(3,Mc,Eigc)
write(*,*)
write(*,'(A40,3F10.6)') 'Eigenvalues of collinearity matrix:', Eigc
write(*,'(A40,1F10.6)') 'Smallest eigenvalue:',Eigc(1)
write(*,'(A40)') '(0 iff wave function collinear)'
deallocate(Mc,Eigc)
! --- --- --- --- --- --- --- --- ---
! --- --- --- --- --- --- --- --- ---
deallocate(Paa, Pab, Pba, Pbb)
end