10
1
mirror of https://github.com/pfloos/quack synced 2025-01-03 10:05:49 +01:00

fusion SRG into qsGW

This commit is contained in:
Pierre-Francois Loos 2024-09-11 15:09:40 +02:00
parent 9ce21a9d2b
commit da7bdcd809
7 changed files with 411 additions and 61 deletions

View File

@ -1,5 +1,5 @@
subroutine RG0W0(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA,dBSE,dTDA,doppBSE,singlet,triplet, &
linearize,eta,regularize,nBas,nOrb,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,dipole_int,eHF)
linearize,eta,doSRG,nBas,nOrb,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,dipole_int,eHF)
! Perform G0W0 calculation
@ -25,7 +25,7 @@ subroutine RG0W0(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA
logical,intent(in) :: triplet
logical,intent(in) :: linearize
double precision,intent(in) :: eta
logical,intent(in) :: regularize
logical,intent(in) :: doSRG
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
@ -87,6 +87,15 @@ subroutine RG0W0(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA
write(*,*)
end if
! SRG regularization
if(doSRG) then
write(*,*) '*** SRG regularized qsGW scheme ***'
write(*,*)
end if
! Memory allocation
allocate(Aph(nS,nS),Bph(nS,nS),SigC(nOrb),Z(nOrb),Om(nS),XpY(nS,nS),XmY(nS,nS),rho(nOrb,nOrb,nS), &
@ -113,9 +122,11 @@ subroutine RG0W0(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA
! Compute GW self-energy !
!------------------------!
if(regularize) call GW_regularization(nOrb,nC,nO,nV,nR,nS,eHF,Om,rho)
call RGW_self_energy_diag(eta,nOrb,nC,nO,nV,nR,nS,eHF,Om,rho,EcGM,SigC,Z)
if(doSRG) then
call RGW_SRG_self_energy_diag(nBas,nOrb,nC,nO,nV,nR,nS,eHF,Om,rho,EcGM,SigC,Z)
else
call RGW_self_energy_diag(eta,nBas,nOrb,nC,nO,nV,nR,nS,eHF,Om,rho,EcGM,SigC,Z)
end if
!-----------------------------------!
! Solve the quasi-particle equation !

View File

@ -0,0 +1,144 @@
subroutine RGW_SRG_self_energy(nBas,nOrb,nC,nO,nV,nR,nS,e,Om,rho,EcGM,SigC,Z)
! Compute correlation part of the self-energy
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: e(nOrb)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nOrb,nOrb,nS)
! Local variables
integer :: i,j,a,b
integer :: p,q
integer :: m
double precision :: Dpim,Dqim,Dpam,Dqam,Diam
double precision :: renorm
double precision :: s
! Output variables
double precision,intent(out) :: EcGM
double precision,intent(out) :: SigC(nOrb,nOrb)
double precision,intent(out) :: Z(nOrb)
!--------------------!
! SRG flow parameter !
!--------------------!
s = 500d0
!--------------------!
! SRG-GW self-energy !
!--------------------!
SigC(:,:) = 0d0
! Occupied part of the correlation self-energy
!$OMP PARALLEL &
!$OMP SHARED(SigC,rho,s,nS,nC,nO,nOrb,nR,e,Om) &
!$OMP PRIVATE(m,i,q,p,Dpim,Dqim,renorm) &
!$OMP DEFAULT(NONE)
!$OMP DO
do q=nC+1,nOrb-nR
do p=nC+1,nOrb-nR
do m=1,nS
do i=nC+1,nO
Dpim = e(p) - e(i) + Om(m)
Dqim = e(q) - e(i) + Om(m)
renorm = (1d0-exp(-s*Dpim*Dpim)*exp(-s*Dqim*Dqim))*(Dpim + Dqim)/(Dpim*Dpim + Dqim*Dqim)
SigC(p,q) = SigC(p,q) + 2d0*rho(p,i,m)*rho(q,i,m)*renorm
end do
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
! Virtual part of the correlation self-energy
!$OMP PARALLEL &
!$OMP SHARED(SigC,rho,s,nS,nC,nO,nR,nOrb,e,Om) &
!$OMP PRIVATE(m,a,q,p,Dpam,Dqam,renorm) &
!$OMP DEFAULT(NONE)
!$OMP DO
do q=nC+1,nOrb-nR
do p=nC+1,nOrb-nR
do m=1,nS
do a=nO+1,nOrb-nR
Dpam = e(p) - e(a) - Om(m)
Dqam = e(q) - e(a) - Om(m)
renorm = (1d0-exp(-s*Dpam*Dpam)*exp(-s*Dqam*Dqam))*(Dpam + Dqam)/(Dpam*Dpam + Dqam*Dqam)
SigC(p,q) = SigC(p,q) + 2d0*rho(p,a,m)*rho(q,a,m)*renorm
end do
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
!------------------------!
! Renormalization factor !
!------------------------!
Z(:) = 0d0
! Occupied part of the renormlization factor
do p=nC+1,nOrb-nR
do i=nC+1,nO
do m=1,nS
Dpim = e(p) - e(i) + Om(m)
Z(p) = Z(p) - 2d0*rho(p,i,m)**2*(1d0-exp(-2d0*s*Dpim*Dpim))/Dpim**2
end do
end do
end do
! Virtual part of the renormlization factor
do p=nC+1,nOrb-nR
do a=nO+1,nOrb-nR
do m=1,nS
Dpam = e(p) - e(a) - Om(m)
Z(p) = Z(p) - 2d0*rho(p,a,m)**2*(1d0-exp(-2d0*s*Dpam*Dpam))/Dpam**2
end do
end do
end do
Z(:) = 1d0/(1d0 - Z(:))
!-------------------------------------!
! Galitskii-Migdal correlation energy !
!-------------------------------------!
EcGM = 0d0
do i=nC+1,nO
do a=nO+1,nOrb-nR
do m=1,nS
Diam = e(a) - e(i) + Om(m)
EcGM = EcGM - 4d0*rho(a,i,m)*rho(a,i,m)*(1d0-exp(-2d0*s*Diam*Diam))/Diam
end do
end do
end do
end subroutine

View File

@ -0,0 +1,138 @@
subroutine RGW_SRG_self_energy_diag(nBas,nOrb,nC,nO,nV,nR,nS,e,Om,rho,EcGM,SigC,Z)
! Compute correlation part of the self-energy
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: e(nOrb)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nOrb,nOrb,nS)
! Local variables
integer :: i,j,a,b
integer :: p
integer :: m
double precision :: Dpim,Dqim,Dpam,Dqam,Diam
double precision :: renorm
double precision :: s
! Output variables
double precision,intent(out) :: EcGM
double precision,intent(out) :: SigC(nOrb)
double precision,intent(out) :: Z(nOrb)
!--------------------!
! SRG flow parameter !
!--------------------!
s = 500d0
!--------------------!
! SRG-GW self-energy !
!--------------------!
SigC(:) = 0d0
! Occupied part of the correlation self-energy
!$OMP PARALLEL &
!$OMP SHARED(SigC,rho,s,nS,nC,nO,nOrb,nR,e,Om) &
!$OMP PRIVATE(m,i,p,Dpim,Dqim,renorm) &
!$OMP DEFAULT(NONE)
!$OMP DO
do p=nC+1,nOrb-nR
do m=1,nS
do i=nC+1,nO
Dpim = e(p) - e(i) + Om(m)
renorm = (1d0-exp(-2d0*s*Dpim*Dpim))/Dpim
SigC(p) = SigC(p) + 2d0*rho(p,i,m)**2*renorm
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
! Virtual part of the correlation self-energy
!$OMP PARALLEL &
!$OMP SHARED(SigC,rho,s,nS,nC,nO,nR,nOrb,e,Om) &
!$OMP PRIVATE(m,a,p,Dpam,Dqam,renorm) &
!$OMP DEFAULT(NONE)
!$OMP DO
do p=nC+1,nOrb-nR
do m=1,nS
do a=nO+1,nOrb-nR
Dpam = e(p) - e(a) - Om(m)
renorm = (1d0-exp(-2d0*s*Dpam*Dpam))/Dpam
SigC(p) = SigC(p) + 2d0*rho(p,a,m)**2*renorm
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
!------------------------!
! Renormalization factor !
!------------------------!
Z(:) = 0d0
! Occupied part of the renormlization factor
do p=nC+1,nOrb-nR
do i=nC+1,nO
do m=1,nS
Dpim = e(p) - e(i) + Om(m)
Z(p) = Z(p) - 2d0*rho(p,i,m)**2*(1d0-exp(-2d0*s*Dpim*Dpim))/Dpim**2
end do
end do
end do
! Virtual part of the renormlization factor
do p=nC+1,nOrb-nR
do a=nO+1,nOrb-nR
do m=1,nS
Dpam = e(p) - e(a) - Om(m)
Z(p) = Z(p) - 2d0*rho(p,a,m)**2*(1d0-exp(-2d0*s*Dpam*Dpam))/Dpam**2
end do
end do
end do
Z(:) = 1d0/(1d0 - Z(:))
!-------------------------------------!
! Galitskii-Migdal correlation energy !
!-------------------------------------!
EcGM = 0d0
do i=nC+1,nO
do a=nO+1,nOrb-nR
do m=1,nS
Diam = e(a) - e(i) + Om(m)
EcGM = EcGM - 4d0*rho(a,i,m)*rho(a,i,m)*(1d0-exp(-2d0*s*Diam*Diam))/Diam
end do
end do
end do
end subroutine

View File

@ -1,4 +1,4 @@
subroutine RGW_self_energy(eta,nBas,nC,nO,nV,nR,nS,e,Om,rho,EcGM,Sig,Z)
subroutine RGW_self_energy(eta,nBas,nOrb,nC,nO,nV,nR,nS,e,Om,rho,EcGM,Sig,Z)
! Compute correlation part of the self-energy and the renormalization factor
@ -9,14 +9,15 @@ subroutine RGW_self_energy(eta,nBas,nC,nO,nV,nR,nS,e,Om,rho,EcGM,Sig,Z)
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: e(nBas)
double precision,intent(in) :: e(nOrb)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nBas,nBas,nS)
double precision,intent(in) :: rho(nOrb,nOrb,nS)
! Local variables
@ -27,34 +28,30 @@ subroutine RGW_self_energy(eta,nBas,nC,nO,nV,nR,nS,e,Om,rho,EcGM,Sig,Z)
! Output variables
double precision,intent(out) :: EcGM
double precision,intent(out) :: Sig(nBas,nBas)
double precision,intent(out) :: Z(nBas)
! Initialize
Sig(:,:) = 0d0
Z(:) = 0d0
double precision,intent(out) :: Sig(nOrb,nOrb)
double precision,intent(out) :: Z(nOrb)
!----------------!
! GW self-energy !
!----------------!
Sig(:,:) = 0d0
! Occupied part of the correlation self-energy
!$OMP PARALLEL &
!$OMP SHARED(Sig,Z,rho,eta,nS,nC,nO,nBas,nR,e,Om) &
!$OMP SHARED(Sig,Z,rho,eta,nS,nC,nO,nOrb,nR,e,Om) &
!$OMP PRIVATE(m,i,q,p,eps,num) &
!$OMP DEFAULT(NONE)
!$OMP DO
do q=nC+1,nBas-nR
do p=nC+1,nBas-nR
do q=nC+1,nOrb-nR
do p=nC+1,nOrb-nR
do m=1,nS
do i=nC+1,nO
eps = e(p) - e(i) + Om(m)
num = 2d0*rho(p,i,m)*rho(q,i,m)
Sig(p,q) = Sig(p,q) + num*eps/(eps**2 + eta**2)
if(p == q) Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
end do
end do
@ -66,19 +63,18 @@ subroutine RGW_self_energy(eta,nBas,nC,nO,nV,nR,nS,e,Om,rho,EcGM,Sig,Z)
! Virtual part of the correlation self-energy
!$OMP PARALLEL &
!$OMP SHARED(Sig,Z,rho,eta,nS,nC,nO,nBas,nR,e,Om) &
!$OMP SHARED(Sig,Z,rho,eta,nS,nC,nO,nOrb,nR,e,Om) &
!$OMP PRIVATE(m,a,q,p,eps,num) &
!$OMP DEFAULT(NONE)
!$OMP DO
do q=nC+1,nBas-nR
do p=nC+1,nBas-nR
do q=nC+1,nOrb-nR
do p=nC+1,nOrb-nR
do m=1,nS
do a=nO+1,nBas-nR
do a=nO+1,nOrb-nR
eps = e(p) - e(a) - Om(m)
num = 2d0*rho(p,a,m)*rho(q,a,m)
Sig(p,q) = Sig(p,q) + num*eps/(eps**2 + eta**2)
if(p == q) Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
end do
end do
@ -87,11 +83,63 @@ subroutine RGW_self_energy(eta,nBas,nC,nO,nV,nR,nS,e,Om,rho,EcGM,Sig,Z)
!$OMP END DO
!$OMP END PARALLEL
! Galitskii-Migdal correlation energy
!------------------------!
! Renormalization factor !
!------------------------!
Z(:) = 0d0
! Occupied part of the renormalization factor
!$OMP PARALLEL &
!$OMP SHARED(Sig,Z,rho,eta,nS,nC,nO,nOrb,nR,e,Om) &
!$OMP PRIVATE(m,i,q,p,eps,num) &
!$OMP DEFAULT(NONE)
!$OMP DO
do p=nC+1,nOrb-nR
do m=1,nS
do i=nC+1,nO
eps = e(p) - e(i) + Om(m)
num = 2d0*rho(p,i,m)*rho(q,i,m)
Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
! Virtual part of the renormalization factor
!$OMP PARALLEL &
!$OMP SHARED(Sig,Z,rho,eta,nS,nC,nO,nOrb,nR,e,Om) &
!$OMP PRIVATE(m,a,q,p,eps,num) &
!$OMP DEFAULT(NONE)
!$OMP DO
do p=nC+1,nOrb-nR
do m=1,nS
do a=nO+1,nOrb-nR
eps = e(p) - e(a) - Om(m)
num = 2d0*rho(p,a,m)*rho(q,a,m)
Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
Z(:) = 1d0/(1d0 - Z(:))
!-------------------------------------!
! Galitskii-Migdal correlation energy !
!-------------------------------------!
EcGM = 0d0
do m=1,nS
do a=nO+1,nBas-nR
do a=nO+1,nOrb-nR
do i=nC+1,nO
eps = e(a) - e(i) + Om(m)
@ -102,8 +150,4 @@ subroutine RGW_self_energy(eta,nBas,nC,nO,nV,nR,nS,e,Om,rho,EcGM,Sig,Z)
end do
end do
! Compute renormalization factor from derivative
Z(:) = 1d0/(1d0 - Z(:))
end subroutine

View File

@ -272,7 +272,6 @@ subroutine SRG_qsRGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS
! Save quasiparticles energy for next cycle
Conv = maxval(abs(err))
eOld(:) = eGW(:)
!------------------------------------------------------------------------

View File

@ -1,5 +1,5 @@
subroutine evRGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA,dBSE,dTDA,doppBSE, &
singlet,triplet,linearize,eta,regularize,nBas,nOrb,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,dipole_int,eHF)
singlet,triplet,linearize,eta,doSRG,nBas,nOrb,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,dipole_int,eHF)
! Perform self-consistent eigenvalue-only GW calculation
@ -29,7 +29,7 @@ subroutine evRGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dop
logical,intent(in) :: triplet
logical,intent(in) :: linearize
double precision,intent(in) :: eta
logical,intent(in) :: regularize
logical,intent(in) :: doSRG
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
@ -125,9 +125,13 @@ subroutine evRGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dop
! Compute correlation part of the self-energy
if(regularize) call GW_regularization(nOrb,nC,nO,nV,nR,nS,eGW,Om,rho)
call GW_regularization(nOrb,nC,nO,nV,nR,nS,eGW,Om,rho)
call RGW_self_energy_diag(eta,nOrb,nC,nO,nV,nR,nS,eGW,Om,rho,EcGM,SigC,Z)
if(doSRG) then
call RGW_SRG_self_energy_diag(nBas,nOrb,nC,nO,nV,nR,nS,eGW,Om,rho,EcGM,SigC,Z)
else
call RGW_self_energy_diag(eta,nBas,nOrb,nC,nO,nV,nR,nS,eGW,Om,rho,EcGM,SigC,Z)
end if
! Solve the quasi-particle equation

View File

@ -1,5 +1,5 @@
subroutine qsRGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2, &
TDA_W,TDA,dBSE,dTDA,doppBSE,singlet,triplet,eta,regularize,nNuc,ZNuc,rNuc, &
TDA_W,TDA,dBSE,dTDA,doppBSE,singlet,triplet,eta,doSRG,nNuc,ZNuc,rNuc, &
ENuc,nBas,nOrb,nC,nO,nV,nR,nS,ERHF,S,X,T,V,Hc,ERI_AO, &
ERI_MO,dipole_int_AO,dipole_int_MO,PHF,cHF,eHF)
@ -28,7 +28,7 @@ subroutine qsRGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dop
logical,intent(in) :: singlet
logical,intent(in) :: triplet
double precision,intent(in) :: eta
logical,intent(in) :: regularize
logical,intent(in) :: doSRG
integer,intent(in) :: nNuc
double precision,intent(in) :: ZNuc(nNuc)
@ -123,6 +123,15 @@ subroutine qsRGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dop
write(*,*)
end if
! SRG regularization
if(doSRG) then
write(*,*) '*** SRG regularized qsGW scheme ***'
write(*,*)
end if
! Memory allocation
allocate(eGW(nOrb))
@ -195,12 +204,13 @@ subroutine qsRGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dop
call phLR(TDA_W,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
if(print_W) call print_excitation_energies('phRPA@GW@RHF','singlet',nS,Om)
call RGW_excitation_density(nOrb,nC,nO,nR,nS,ERI_MO,XpY,rho)
if(regularize) call GW_regularization(nOrb,nC,nO,nV,nR,nS,eGW,Om,rho)
call RGW_self_energy(eta,nOrb,nC,nO,nV,nR,nS,eGW,Om,rho,EcGM,SigC,Z)
if(doSRG) then
call RGW_SRG_self_energy(nBas,nOrb,nC,nO,nV,nR,nS,eGW,Om,rho,EcGM,SigC,Z)
else
call RGW_self_energy(eta,nBas,nOrb,nC,nO,nV,nR,nS,eGW,Om,rho,EcGM,SigC,Z)
end if
! Make correlation self-energy Hermitian and transform it back to AO basis