mirror of
https://github.com/pfloos/quack
synced 2025-01-08 20:33:19 +01:00
commit for clotilde weight-dependent functionals
This commit is contained in:
parent
388db3ca6e
commit
d2182e22d7
54
input/dft
54
input/dft
@ -4,38 +4,38 @@
|
||||
# Hartree = 0: H
|
||||
# LDA = 1: S51,CC-S51
|
||||
# GGA = 2: B88,G96,PBE
|
||||
# MGGA = 3:
|
||||
# Hybrid = 4: HF,B3LYP,PBE
|
||||
4 HF
|
||||
# MGGA = 3:
|
||||
# Hybrid = 4 HF,B3LYP,PBE
|
||||
1 CC-S51
|
||||
# correlation rung:
|
||||
# Hartree = 0: H
|
||||
# LDA = 1: PW92,VWN3,VWN5,eVWN5
|
||||
# GGA = 2: LYP,PBE
|
||||
# MGGA = 3:
|
||||
# Hybrid = 4: HF,B3LYP,PBE
|
||||
4 HF
|
||||
# Hybrid = 4: HF,B3LYP,PBE
|
||||
1 VWN5
|
||||
# quadrature grid SG-n
|
||||
0
|
||||
1
|
||||
# Number of states in ensemble (nEns)
|
||||
4
|
||||
# occupation numbers
|
||||
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
|
||||
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
|
||||
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
|
||||
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
# Ensemble weights: wEns(1),...,wEns(nEns-1)
|
||||
0.00 0.00 1.00
|
||||
# N-centered?
|
||||
F
|
||||
# Parameters for CC weight-dependent exchange functional
|
||||
0.0 0.0 0.0
|
||||
0.0 0.0 0.0
|
||||
# choice of UCC exchange coefficient : 1 for Cx1, 2 for Cx2, 3 for Cx1*Cx2
|
||||
2
|
||||
# occupation numbers
|
||||
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
|
||||
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
|
||||
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
|
||||
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
# Ensemble weights: wEns(1),...,wEns(nEns-1)
|
||||
0.0 0.0 0.0
|
||||
# Ncentered ?
|
||||
T
|
||||
# Parameters for CC weight-dependent exchange functional
|
||||
-0.766201 -0.155585 0.00130104
|
||||
0.00 0.00 0.00 0.00
|
||||
# choice of UCC exchange coefficient : 1 for Cx1, 2 for Cx2, 3 for Cx1*Cx2
|
||||
1
|
||||
|
@ -60,28 +60,59 @@ subroutine UCC_lda_exchange_derivative_discontinuity(nEns,wEns,aCC_w1,aCC_w2,nGr
|
||||
w1 = wEns(2)
|
||||
w2 = wEns(3)
|
||||
|
||||
select case (Cx_choice)
|
||||
|
||||
case(1)
|
||||
dCxdw1 = (0.5d0*b1 + (2d0*a1 + 0.5d0*c1)*(w1 - 0.5d0) - (1d0 - w1)*w1*(3d0*b1 + 4d0*c1*(w1 - 0.5d0)))
|
||||
dCxdw2 = 0.d0
|
||||
if (doNcentered) then
|
||||
|
||||
select case (Cx_choice)
|
||||
|
||||
case(2)
|
||||
dCxdw1 = 0.d0
|
||||
dCxdw2 =(0.5d0*b2 + (2d0*a2 + 0.5d0*c2)*(w2 - 0.5d0) - (1d0 - w2)*w2*(3d0*b2 + 4d0*c2*(w2 - 0.5d0)))
|
||||
case(1)
|
||||
dCxdw1 = 2.d0*a1*(w1-1.d0)+(2.d0+3.d0*(w1-2.d0)*w1)*b1+2.d0*(w1-1.d0)*(1.d0+2.d0*(w1-2.d0)*w1)*c1
|
||||
dCxdw2 = 0.d0
|
||||
|
||||
case(3)
|
||||
dCxdw1 = (0.5d0*b1 + (2d0*a1 + 0.5d0*c1)*(w1 - 0.5d0) - (1d0 - w1)*w1*(3d0*b1 + 4d0*c1*(w1 - 0.5d0))) &
|
||||
* (1d0 - w2*(1d0 - w2)*(a2 + b2*(w2 - 0.5d0) + c2*(w2 - 0.5d0)**2))
|
||||
case(2)
|
||||
dCxdw1 = 0.d0
|
||||
dCxdw2 = 2.d0*a2*(w2-1.d0)+(2.d0+3.d0*(w2-2.d0)*w2)*b2+2.d0*(w2-1.d0)*(1.d0+2.d0*(w2-2.d0)*w2)*c2
|
||||
|
||||
dCxdw2 = (1d0 - w1*(1d0 - w1)*(a1 + b1*(w1 - 0.5d0) + c1*(w1 - 0.5d0)**2)) &
|
||||
* (0.5d0*b2 + (2d0*a2 + 0.5d0*c2)*(w2 - 0.5d0) - (1d0 - w2)*w2*(3d0*b2 + 4d0*c2*(w2 - 0.5d0)))
|
||||
case(3)
|
||||
dCxdw1 = (2.d0*a1*(w1-1.d0)+(2.d0+3.d0*(w1-2.d0)*w1)*b1+2.d0*(w1-1.d0)*(1.d0+2.d0*(w1-2.d0)*w1)*c1) &
|
||||
* (1d0 - w2*(2d0 - w2)*(a2 + b2*(w2 - 1d0) + c2*(w2 - 1d0)**2))
|
||||
|
||||
case default
|
||||
dCxdw1 = 0d0
|
||||
dCxdw2 = 0d0
|
||||
dCxdw2 = (1d0 - w1*(2d0 - w1)*(a1 + b1*(w1 - 1.d0) + c1*(w1 - 1.d0)**2)) &
|
||||
* (2.d0*a2*(w2-1.d0)+(2.d0+3.d0*(w2-2.d0)*w2)*b2+2.d0*(w2-1.d0)*(1.d0+2.d0*(w2-2.d0)*w2)*c2)
|
||||
|
||||
case default
|
||||
dCxdw1 = 0d0
|
||||
dCxdw2 = 0d0
|
||||
|
||||
end select
|
||||
|
||||
else
|
||||
|
||||
|
||||
select case (Cx_choice)
|
||||
|
||||
case(1)
|
||||
dCxdw1 = (0.5d0*b1 + (2d0*a1 + 0.5d0*c1)*(w1 - 0.5d0) - (1d0 - w1)*w1*(3d0*b1 + 4d0*c1*(w1 - 0.5d0)))
|
||||
dCxdw2 = 0.d0
|
||||
|
||||
case(2)
|
||||
dCxdw1 = 0.d0
|
||||
dCxdw2 =(0.5d0*b2 + (2d0*a2 + 0.5d0*c2)*(w2 - 0.5d0) - (1d0 - w2)*w2*(3d0*b2 + 4d0*c2*(w2 - 0.5d0)))
|
||||
|
||||
case(3)
|
||||
dCxdw1 = (0.5d0*b1 + (2d0*a1 + 0.5d0*c1)*(w1 - 0.5d0) - (1d0 - w1)*w1*(3d0*b1 + 4d0*c1*(w1 - 0.5d0))) &
|
||||
* (1d0 - w2*(1d0 - w2)*(a2 + b2*(w2 - 0.5d0) + c2*(w2 - 0.5d0)**2))
|
||||
|
||||
dCxdw2 = (1d0 - w1*(1d0 - w1)*(a1 + b1*(w1 - 0.5d0) + c1*(w1 - 0.5d0)**2)) &
|
||||
* (0.5d0*b2 + (2d0*a2 + 0.5d0*c2)*(w2 - 0.5d0) - (1d0 - w2)*w2*(3d0*b2 + 4d0*c2*(w2 - 0.5d0)))
|
||||
|
||||
case default
|
||||
dCxdw1 = 0d0
|
||||
dCxdw2 = 0d0
|
||||
|
||||
end select
|
||||
end if
|
||||
|
||||
end select
|
||||
|
||||
dCxdw1 = CxLSDA*dCxdw1
|
||||
dCxdw2 = CxLSDA*dCxdw2
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine UCC_lda_exchange_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rho,Ex,Cx_choice)
|
||||
subroutine UCC_lda_exchange_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rho,Cx_choice,doNcentered,Ex)
|
||||
|
||||
! Compute the unrestricted version of the curvature-corrected exchange functional
|
||||
|
||||
@ -15,6 +15,7 @@ subroutine UCC_lda_exchange_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rho,Ex,C
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
integer,intent(in) :: Cx_choice
|
||||
logical,intent(in) :: doNcentered
|
||||
|
||||
! Local variables
|
||||
|
||||
@ -68,11 +69,24 @@ subroutine UCC_lda_exchange_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rho,Ex,C
|
||||
! Fx1 for states N and N-1
|
||||
! Fx2 for states N and N+1
|
||||
|
||||
w1 = wEns(2)
|
||||
Fx1 = 1d0 - w1*(1d0 - w1)*(a1 + b1*(w1 - 0.5d0) + c1*(w1 - 0.5d0)**2)
|
||||
if(doNcentered) then
|
||||
|
||||
w1 = wEns(2)
|
||||
Fx1 = 1d0 - w1*(2d0 - w1)*(a1 + b1*(w1 - 1d0) + c1*(w1 - 1d0)**2)
|
||||
|
||||
w2 = wEns(3)
|
||||
Fx2 = 1d0 - w2*(2d0 - w2)*(a2 + b2*(w2 - 1d0) + c2*(w2 - 1d0)**2)
|
||||
|
||||
w2 = wEns(3)
|
||||
Fx2 = 1d0 - w2*(1d0 - w2)*(a2 + b2*(w2 - 0.5d0) + c2*(w2 - 0.5d0)**2)
|
||||
else
|
||||
|
||||
|
||||
w1 = wEns(2)
|
||||
Fx1 = 1d0 - w1*(1d0 - w1)*(a1 + b1*(w1 - 0.5d0) + c1*(w1 - 0.5d0)**2)
|
||||
|
||||
w2 = wEns(3)
|
||||
Fx2 = 1d0 - w2*(1d0 - w2)*(a2 + b2*(w2 - 0.5d0) + c2*(w2 - 0.5d0)**2)
|
||||
|
||||
endif
|
||||
|
||||
select case (Cx_choice)
|
||||
|
||||
|
@ -17,13 +17,14 @@ subroutine UCC_lda_exchange_individual_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weig
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
integer,intent(in) :: Cx_choice
|
||||
logical,intent(in) :: doNcentered
|
||||
double precision,intent(in) :: kappa(nEns)
|
||||
double precision,intent(in) :: kappa
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: r,rI
|
||||
double precision :: e_p,dedr
|
||||
double precision :: Exrr,ExrI,ExrrI
|
||||
|
||||
double precision :: a1,b1,c1,w1
|
||||
double precision :: a2,b2,c2,w2
|
||||
@ -50,11 +51,24 @@ subroutine UCC_lda_exchange_individual_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weig
|
||||
b2 = aCC_w2(2)
|
||||
c2 = aCC_w2(3)
|
||||
|
||||
w1 = wEns(2)
|
||||
Fx1 = 1d0 - w1*(1d0 - w1)*(a1 + b1*(w1 - 0.5d0) + c1*(w1 - 0.5d0)**2)
|
||||
if(doNcentered) then
|
||||
|
||||
w2 = wEns(3)
|
||||
Fx2 = 1d0 - w2*(1d0 - w2)*(a2 + b2*(w2 - 0.5d0) + c2*(w2 - 0.5d0)**2)
|
||||
w1 = wEns(2)
|
||||
Fx1 = 1d0 - w1*(2d0 - w1)*(a1 + b1*(w1 - 1d0) + c1*(w1 - 1d0)**2)
|
||||
|
||||
w2 = wEns(3)
|
||||
Fx2 = 1d0 - w2*(2d0 - w2)*(a2 + b2*(w2 - 1d0) + c2*(w2 - 1d0)**2)
|
||||
|
||||
else
|
||||
|
||||
|
||||
w1 = wEns(2)
|
||||
Fx1 = 1d0 - w1*(1d0 - w1)*(a1 + b1*(w1 - 0.5d0) + c1*(w1 - 0.5d0)**2)
|
||||
|
||||
w2 = wEns(3)
|
||||
Fx2 = 1d0 - w2*(1d0 - w2)*(a2 + b2*(w2 - 0.5d0) + c2*(w2 - 0.5d0)**2)
|
||||
|
||||
endif
|
||||
|
||||
select case (Cx_choice)
|
||||
|
||||
@ -75,6 +89,11 @@ subroutine UCC_lda_exchange_individual_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weig
|
||||
! Compute LDA exchange matrix in the AO basis
|
||||
|
||||
Ex = 0d0
|
||||
Exrr = 0d0
|
||||
ExrI = 0d0
|
||||
ExrrI = 0d0
|
||||
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rhow(iG))
|
||||
@ -85,11 +104,12 @@ subroutine UCC_lda_exchange_individual_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weig
|
||||
e_p = Cx*r**(1d0/3d0)
|
||||
dedr = 1d0/3d0*Cx*r**(-2d0/3d0)
|
||||
|
||||
Ex = Ex - weight(iG)*dedr*r*r
|
||||
Exrr = Exrr - weight(iG)*dedr*r*r
|
||||
|
||||
if(rI > threshold) then
|
||||
|
||||
Ex = Ex + weight(iG)*(e_p*rI + dedr*r*rI)
|
||||
ExrI = ExrI + weight(iG)*e_p*rI
|
||||
ExrrI = ExrrI + weight(iG)*dedr*r*rI
|
||||
|
||||
endif
|
||||
|
||||
@ -97,4 +117,16 @@ subroutine UCC_lda_exchange_individual_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weig
|
||||
|
||||
enddo
|
||||
|
||||
! De-scaling for N-centered ensemble
|
||||
|
||||
if(doNcentered) then
|
||||
|
||||
Exrr = kappa*Exrr
|
||||
ExrI = kappa*ExrI
|
||||
|
||||
endif
|
||||
|
||||
Ex = Exrr + ExrI + ExrrI
|
||||
|
||||
|
||||
end subroutine UCC_lda_exchange_individual_energy
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine UCC_lda_exchange_potential(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,AO,rho,Fx,Cx_choice)
|
||||
subroutine UCC_lda_exchange_potential(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,AO,rho,Fx,Cx_choice,doNcentered)
|
||||
|
||||
! Compute the unrestricted version of the curvature-corrected exchange potential
|
||||
|
||||
@ -17,6 +17,7 @@ subroutine UCC_lda_exchange_potential(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,
|
||||
double precision,intent(in) :: AO(nBas,nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
integer,intent(in) :: Cx_choice
|
||||
logical,intent(in) :: doNcentered
|
||||
|
||||
! Local variables
|
||||
|
||||
@ -70,11 +71,23 @@ subroutine UCC_lda_exchange_potential(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,
|
||||
! Fx1 for states N and N-1
|
||||
! Fx2 for states N and N+1
|
||||
|
||||
w1 = wEns(2)
|
||||
Fx1 = 1d0 - w1*(1d0 - w1)*(a1 + b1*(w1 - 0.5d0) + c1*(w1 - 0.5d0)**2)
|
||||
if(doNcentered) then
|
||||
|
||||
w2 = wEns(3)
|
||||
Fx2 = 1d0 - w2*(1d0 - w2)*(a2 + b2*(w2 - 0.5d0) + c2*(w2 - 0.5d0)**2)
|
||||
w1 = wEns(2)
|
||||
Fx1 = 1d0 - w1*(2d0 - w1)*(a1 + b1*(w1 - 1d0) + c1*(w1 - 1d0)**2)
|
||||
|
||||
w2 = wEns(3)
|
||||
Fx2 = 1d0 - w2*(2d0 - w2)*(a2 + b2*(w2 - 1d0) + c2*(w2 - 1d0)**2)
|
||||
|
||||
else
|
||||
|
||||
w1 = wEns(2)
|
||||
Fx1 = 1d0 - w1*(1d0 - w1)*(a1 + b1*(w1 - 0.5d0) + c1*(w1 - 0.5d0)**2)
|
||||
|
||||
w2 = wEns(3)
|
||||
Fx2 = 1d0 - w2*(1d0 - w2)*(a2 + b2*(w2 - 0.5d0) + c2*(w2 - 0.5d0)**2)
|
||||
|
||||
endif
|
||||
|
||||
select case (Cx_choice)
|
||||
|
||||
|
@ -261,7 +261,7 @@ subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,aCC_w1,aCC_w2,nGrid,weig
|
||||
do ispin=1,nspin
|
||||
call unrestricted_exchange_potential(x_rung,x_DFA,LDA_centered,nEns,wEns(:),aCC_w1,aCC_w2,nGrid,weight(:),nBas, &
|
||||
Pw(:,:,ispin),ERI(:,:,:,:),AO(:,:),dAO(:,:,:),rhow(:,ispin),drhow(:,:,ispin), &
|
||||
Fx(:,:,ispin),FxHF(:,:,ispin),Cx_choice)
|
||||
Fx(:,:,ispin),FxHF(:,:,ispin),Cx_choice,doNcentered)
|
||||
end do
|
||||
|
||||
! Compute correlation potential
|
||||
@ -339,7 +339,8 @@ subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,aCC_w1,aCC_w2,nGrid,weig
|
||||
|
||||
do ispin=1,nspin
|
||||
call unrestricted_exchange_energy(x_rung,x_DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas, &
|
||||
Pw(:,:,ispin),FxHF(:,:,ispin),rhow(:,ispin),drhow(:,:,ispin),Ex(ispin),Cx_choice)
|
||||
Pw(:,:,ispin),FxHF(:,:,ispin),rhow(:,ispin),drhow(:,:,ispin),Ex(ispin)&
|
||||
,Cx_choice,doNcentered)
|
||||
end do
|
||||
|
||||
! Correlation energy
|
||||
|
@ -149,134 +149,134 @@ subroutine print_unrestricted_individual_energy(nEns,ENuc,Ew,ET,EV,EJ,Ex,Ec,Exc,
|
||||
! Total Energy and IP and EA
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! write(*,'(A60)') ' IP AND EA FROM AUXILIARY ENERGIES '
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,'(A60)') ' IP AND EA FROM AUXILIARY ENERGIES '
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
|
||||
! write(*,'(A43,F16.10,A4)') ' Ionization Potential 1 -> 2:',Omaux(2)+OmxcDD(2),' au'
|
||||
! write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',Omaux(2), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(2), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(2), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(2),' au'
|
||||
! write(*,*)
|
||||
! write(*,'(A43,F16.10,A4)') ' Electronic Affinity 1 -> 3:',-(Omaux(3)+OmxcDD(3)),' au'
|
||||
! write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',-Omaux(3), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',-OmxDD(3), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',-OmcDD(3), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',-OmxcDD(3),' au'
|
||||
! write(*,*)
|
||||
! write(*,'(A43,F16.10,A4)') ' Fundamental Gap :',Omaux(2)+OmxcDD(2)+(Omaux(3)+OmxcDD(3)),' au'
|
||||
! write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',Omaux(2)+Omaux(3), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(2)+OmxDD(3), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(2)+OmcDD(3), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(2)+OmxcDD(3),' au'
|
||||
! write(*,*)
|
||||
write(*,'(A43,F16.10,A4)') ' Ionization Potential 1 -> 2:',Omaux(2)+OmxcDD(2),' au'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',Omaux(2), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(2), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(2), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(2),' au'
|
||||
write(*,*)
|
||||
write(*,'(A43,F16.10,A4)') ' Electronic Affinity 1 -> 3:',-(Omaux(3)+OmxcDD(3)),' au'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',-Omaux(3), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',-OmxDD(3), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',-OmcDD(3), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',-OmxcDD(3),' au'
|
||||
write(*,*)
|
||||
write(*,'(A43,F16.10,A4)') ' Fundamental Gap :',Omaux(2)+OmxcDD(2)+(Omaux(3)+OmxcDD(3)),' au'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',Omaux(2)+Omaux(3), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(2)+OmxDD(3), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(2)+OmcDD(3), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(2)+OmxcDD(3),' au'
|
||||
write(*,*)
|
||||
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! write(*,*)
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,*)
|
||||
|
||||
! write(*,'(A40,F16.10,A3)') ' Ionization Potential 1 -> 2:',(Omaux(2)+OmxcDD(2))*HaToeV,' eV'
|
||||
! write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',Omaux(2)*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(2)*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(2)*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(2)*HaToeV,' eV'
|
||||
! write(*,*)
|
||||
! write(*,'(A40,F16.10,A3)') ' Electronic Affinity 1 -> 3:',-(Omaux(3)+OmxcDD(3))*HaToeV,' eV'
|
||||
! write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',-Omaux(3)*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',-OmxDD(3)*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',-OmcDD(3)*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',-OmxcDD(3)*HaToeV,' eV'
|
||||
! write(*,*)
|
||||
! write(*,'(A43,F16.10,A4)') ' Fundamental Gap :',(Omaux(2)+OmxcDD(2)+(Omaux(3)+OmxcDD(3)))*HaToeV,' eV'
|
||||
! write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',(Omaux(2)+Omaux(3))*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',(OmxDD(2)+OmxDD(3))*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',(OmcDD(2)+OmcDD(3))*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',(OmxcDD(2)+OmxcDD(3))*HaToeV,' eV'
|
||||
! write(*,*)
|
||||
write(*,'(A40,F16.10,A3)') ' Ionization Potential 1 -> 2:',(Omaux(2)+OmxcDD(2))*HaToeV,' eV'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',Omaux(2)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(2)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(2)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(2)*HaToeV,' eV'
|
||||
write(*,*)
|
||||
write(*,'(A40,F16.10,A3)') ' Electronic Affinity 1 -> 3:',-(Omaux(3)+OmxcDD(3))*HaToeV,' eV'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',-Omaux(3)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',-OmxDD(3)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',-OmcDD(3)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',-OmxcDD(3)*HaToeV,' eV'
|
||||
write(*,*)
|
||||
write(*,'(A43,F16.10,A4)') ' Fundamental Gap :',(Omaux(2)+OmxcDD(2)+(Omaux(3)+OmxcDD(3)))*HaToeV,' eV'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',(Omaux(2)+Omaux(3))*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',(OmxDD(2)+OmxDD(3))*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',(OmcDD(2)+OmcDD(3))*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',(OmxcDD(2)+OmxcDD(3))*HaToeV,' eV'
|
||||
write(*,*)
|
||||
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! write(*,*)
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,*)
|
||||
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! write(*,'(A60)') ' IP and EA FROM INDIVIDUAL ENERGIES '
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! do iEns=1,nEns
|
||||
! write(*,'(A40,I2,A2,F16.10,A3)') ' Individual energy state ',iEns,': ',E(iEns) + ENuc,' au'
|
||||
! end do
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,'(A60)') ' IP and EA FROM INDIVIDUAL ENERGIES '
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
do iEns=1,nEns
|
||||
write(*,'(A40,I2,A2,F16.10,A3)') ' Individual energy state ',iEns,': ',E(iEns) + ENuc,' au'
|
||||
end do
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
|
||||
! write(*,'(A43,F16.10,A4)') ' Ionization Potential 1 -> 2:',Om(2), ' au'
|
||||
! write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' x energy contribution : ',Omx(2), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' c energy contribution : ',Omc(2), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',Omxc(2), ' au'
|
||||
! write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(2), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(2), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(2),' au'
|
||||
! write(*,*)
|
||||
! write(*,'(A43,F16.10,A4)') ' Electronic Affinity 1 -> 3:',-Om(3), ' au'
|
||||
! write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' x energy contribution : ',-Omx(3), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' c energy contribution : ',-Omc(3), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',-Omxc(3), ' au'
|
||||
! write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',-OmxDD(3), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',-OmcDD(3), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',-OmxcDD(3),' au'
|
||||
! write(*,*)
|
||||
! write(*,'(A43,F16.10,A4)') ' Fundamental Gap :',Om(2)+Om(3), ' au'
|
||||
! write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' x energy contribution : ',Omx(2)+Omx(3), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' c energy contribution : ',Omc(2)+Omc(3), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',Omxc(2)+Omxc(3), ' au'
|
||||
! write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(2)+OmxDD(3), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(2)+OmcDD(3), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(2)+OmxcDD(3),' au'
|
||||
! write(*,*)
|
||||
write(*,'(A43,F16.10,A4)') ' Ionization Potential 1 -> 2:',Om(2), ' au'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' x energy contribution : ',Omx(2), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' c energy contribution : ',Omc(2), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',Omxc(2), ' au'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(2), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(2), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(2),' au'
|
||||
write(*,*)
|
||||
write(*,'(A43,F16.10,A4)') ' Electronic Affinity 1 -> 3:',-Om(3), ' au'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' x energy contribution : ',-Omx(3), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' c energy contribution : ',-Omc(3), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',-Omxc(3), ' au'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',-OmxDD(3), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',-OmcDD(3), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',-OmxcDD(3),' au'
|
||||
write(*,*)
|
||||
write(*,'(A43,F16.10,A4)') ' Fundamental Gap :',Om(2)+Om(3), ' au'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' x energy contribution : ',Omx(2)+Omx(3), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' c energy contribution : ',Omc(2)+Omc(3), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',Omxc(2)+Omxc(3), ' au'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(2)+OmxDD(3), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(2)+OmcDD(3), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(2)+OmxcDD(3),' au'
|
||||
write(*,*)
|
||||
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
|
||||
! write(*,'(A43,F16.10,A4)') ' Ionization Potential 1 -> 2:',Om(2)*HaToeV, ' eV'
|
||||
! write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' x energy contribution : ',Omx(2)*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' c energy contribution : ',Omc(2)*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',Omxc(2)*HaToeV, ' eV'
|
||||
! write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(2)*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(2)*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(2)*HaToeV,' eV'
|
||||
! write(*,*)
|
||||
! write(*,'(A43,F16.10,A4)') ' Electronic Affinity 1 -> 3:',-Om(3)*HaToeV, ' eV'
|
||||
! write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' x energy contribution : ',-Omx(3)*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' c energy contribution : ',-Omc(3)*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',-Omxc(3)*HaToeV, ' eV'
|
||||
! write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',-OmxDD(3)*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',-OmcDD(3)*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',-OmxcDD(3)*HaToeV,' eV'
|
||||
! write(*,*)
|
||||
! write(*,'(A43,F16.10,A4)') ' Fundamental Gap :',(Om(2)+Om(3))*HaToeV, ' eV'
|
||||
! write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' x energy contribution : ',(Omx(2)+Omx(3))*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' c energy contribution : ',(Omc(2)+Omc(3))*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',(Omxc(2)+Omxc(3))*HaToeV, ' eV'
|
||||
! write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',(OmxDD(2)+OmxDD(3))*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',(OmcDD(2)+OmcDD(3))*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',(OmxcDD(2)+OmxcDD(3))*HaToeV,' eV'
|
||||
! write(*,*)
|
||||
!
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,'(A43,F16.10,A4)') ' Ionization Potential 1 -> 2:',Om(2)*HaToeV, ' eV'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' x energy contribution : ',Omx(2)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' c energy contribution : ',Omc(2)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',Omxc(2)*HaToeV, ' eV'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(2)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(2)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(2)*HaToeV,' eV'
|
||||
write(*,*)
|
||||
write(*,'(A43,F16.10,A4)') ' Electronic Affinity 1 -> 3:',-Om(3)*HaToeV, ' eV'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' x energy contribution : ',-Omx(3)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' c energy contribution : ',-Omc(3)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',-Omxc(3)*HaToeV, ' eV'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',-OmxDD(3)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',-OmcDD(3)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',-OmxcDD(3)*HaToeV,' eV'
|
||||
write(*,*)
|
||||
write(*,'(A43,F16.10,A4)') ' Fundamental Gap :',(Om(2)+Om(3))*HaToeV, ' eV'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' x energy contribution : ',(Omx(2)+Omx(3))*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' c energy contribution : ',(Omc(2)+Omc(3))*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',(Omxc(2)+Omxc(3))*HaToeV, ' eV'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',(OmxDD(2)+OmxDD(3))*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',(OmcDD(2)+OmcDD(3))*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',(OmxcDD(2)+OmxcDD(3))*HaToeV,' eV'
|
||||
write(*,*)
|
||||
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
|
||||
! write(*,*)
|
||||
write(*,*)
|
||||
|
||||
end subroutine print_unrestricted_individual_energy
|
||||
|
@ -1,5 +1,5 @@
|
||||
subroutine unrestricted_exchange_energy(rung,DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,P,FxHF, &
|
||||
rho,drho,Ex,Cx_choice)
|
||||
rho,drho,Ex,Cx_choice,doNcentered)
|
||||
|
||||
! Compute the exchange energy
|
||||
|
||||
@ -23,6 +23,7 @@ subroutine unrestricted_exchange_energy(rung,DFA,LDA_centered,nEns,wEns,aCC_w1,a
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
double precision,intent(in) :: drho(ncart,nGrid)
|
||||
integer,intent(in) :: Cx_choice
|
||||
logical,intent(in) :: doNcentered
|
||||
|
||||
! Local variables
|
||||
|
||||
@ -43,7 +44,7 @@ subroutine unrestricted_exchange_energy(rung,DFA,LDA_centered,nEns,wEns,aCC_w1,a
|
||||
case(1)
|
||||
|
||||
call unrestricted_lda_exchange_energy(DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,&
|
||||
rho,Ex,Cx_choice)
|
||||
rho,Ex,Cx_choice,doNcentered)
|
||||
|
||||
! GGA functionals
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
subroutine unrestricted_exchange_potential(rung,DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,P, &
|
||||
ERI,AO,dAO,rho,drho,Fx,FxHF,Cx_choice)
|
||||
ERI,AO,dAO,rho,drho,Fx,FxHF,Cx_choice,doNcentered)
|
||||
|
||||
! Compute the exchange potential
|
||||
|
||||
@ -25,6 +25,7 @@ subroutine unrestricted_exchange_potential(rung,DFA,LDA_centered,nEns,wEns,aCC_w
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
double precision,intent(in) :: drho(ncart,nGrid)
|
||||
integer,intent(in) :: Cx_choice
|
||||
logical,intent(in) :: doNcentered
|
||||
|
||||
! Local variables
|
||||
|
||||
@ -49,7 +50,8 @@ subroutine unrestricted_exchange_potential(rung,DFA,LDA_centered,nEns,wEns,aCC_w
|
||||
|
||||
case(1)
|
||||
|
||||
call unrestricted_lda_exchange_potential(DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,AO,rho,Fx,Cx_choice)
|
||||
call unrestricted_lda_exchange_potential(DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,AO,rho,Fx,&
|
||||
Cx_choice,doNcentered)
|
||||
|
||||
! GGA functionals
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_lda_exchange_energy(DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rho,Ex,Cx_choice)
|
||||
subroutine unrestricted_lda_exchange_energy(DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rho,Ex,Cx_choice,doNcentered)
|
||||
|
||||
! Select LDA exchange functional
|
||||
|
||||
@ -17,6 +17,7 @@ subroutine unrestricted_lda_exchange_energy(DFA,LDA_centered,nEns,wEns,aCC_w1,aC
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
integer,intent(in) :: Cx_choice
|
||||
logical,intent(in) :: doNcentered
|
||||
|
||||
! Output variables
|
||||
|
||||
@ -32,7 +33,7 @@ subroutine unrestricted_lda_exchange_energy(DFA,LDA_centered,nEns,wEns,aCC_w1,aC
|
||||
|
||||
case (2)
|
||||
|
||||
call UCC_lda_exchange_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rho,Ex,Cx_choice)
|
||||
call UCC_lda_exchange_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rho,Cx_choice,doNcentered,Ex)
|
||||
|
||||
case default
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
subroutine unrestricted_lda_exchange_potential(DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,AO,rho,Fx,Cx_choice)
|
||||
subroutine unrestricted_lda_exchange_potential(DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,AO,rho,Fx &
|
||||
,Cx_choice,doNcentered)
|
||||
|
||||
! Select LDA correlation potential
|
||||
|
||||
@ -20,6 +21,7 @@ subroutine unrestricted_lda_exchange_potential(DFA,LDA_centered,nEns,wEns,aCC_w1
|
||||
double precision,intent(in) :: AO(nBas,nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
integer,intent(in) :: Cx_choice
|
||||
logical,intent(in) :: doNcentered
|
||||
|
||||
! Output variables
|
||||
|
||||
@ -35,7 +37,7 @@ subroutine unrestricted_lda_exchange_potential(DFA,LDA_centered,nEns,wEns,aCC_w1
|
||||
|
||||
case (2)
|
||||
|
||||
call UCC_lda_exchange_potential(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,AO,rho,Fx,Cx_choice)
|
||||
call UCC_lda_exchange_potential(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,AO,rho,Fx,Cx_choice,doNcentered)
|
||||
|
||||
case default
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user