mirror of
https://github.com/pfloos/quack
synced 2024-11-04 13:13:51 +01:00
URPA
This commit is contained in:
parent
2b7f31a340
commit
ce10bbaf56
@ -9,11 +9,11 @@
|
||||
# CIS CID CISD
|
||||
F F F
|
||||
# RPA RPAx ppRPA
|
||||
F F F
|
||||
T F F
|
||||
# G0F2 evGF2 G0F3 evGF3
|
||||
F F F F
|
||||
# G0W0 evGW qsGW
|
||||
T F F
|
||||
F F F
|
||||
# G0T0 evGT qsGT
|
||||
F F F
|
||||
# MCMP2
|
||||
|
@ -634,8 +634,16 @@ program QuAcK
|
||||
if(doRPA) then
|
||||
|
||||
call cpu_time(start_RPA)
|
||||
call RPA(doACFDT,exchange_kernel,singlet,triplet,0d0, &
|
||||
nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF)
|
||||
if(unrestricted) then
|
||||
|
||||
call UdRPA(doACFDT,exchange_kernel,spin_conserved,spin_flip,0d0,nBas,nC,nO,nV,nR,nS,ENuc,EUHF, &
|
||||
ERI_MO_aaaa,ERI_MO_aabb,ERI_MO_bbbb,ERI_MO_abab,eHF)
|
||||
|
||||
else
|
||||
|
||||
call dRPA(doACFDT,exchange_kernel,singlet,triplet,0d0,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF)
|
||||
|
||||
end if
|
||||
call cpu_time(end_RPA)
|
||||
|
||||
t_RPA = end_RPA - start_RPA
|
||||
@ -651,8 +659,16 @@ program QuAcK
|
||||
if(doRPAx) then
|
||||
|
||||
call cpu_time(start_RPAx)
|
||||
call RPAx(doACFDT,exchange_kernel,singlet,triplet,0d0, &
|
||||
nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF)
|
||||
if(unrestricted) then
|
||||
|
||||
call URPAx(doACFDT,exchange_kernel,spin_conserved,spin_flip,0d0,nBas,nC,nO,nV,nR,nS,ENuc,EUHF, &
|
||||
ERI_MO_aaaa,ERI_MO_aabb,ERI_MO_bbbb,ERI_MO_abab,eHF)
|
||||
|
||||
else
|
||||
|
||||
call RPAx(doACFDT,exchange_kernel,singlet,triplet,0d0,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF)
|
||||
|
||||
end if
|
||||
call cpu_time(end_RPAx)
|
||||
|
||||
t_RPAx = end_RPAx - start_RPAx
|
||||
|
@ -1,5 +1,4 @@
|
||||
subroutine RPAx(doACFDT,exchange_kernel,singlet_manifold,triplet_manifold,eta, &
|
||||
nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,e)
|
||||
subroutine RPAx(doACFDT,exchange_kernel,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,e)
|
||||
|
||||
! Perform random phase approximation calculation with exchange (aka TDHF)
|
||||
|
||||
@ -11,9 +10,9 @@ subroutine RPAx(doACFDT,exchange_kernel,singlet_manifold,triplet_manifold,eta, &
|
||||
|
||||
logical,intent(in) :: doACFDT
|
||||
logical,intent(in) :: exchange_kernel
|
||||
logical,intent(in) :: singlet_manifold
|
||||
logical,intent(in) :: singlet
|
||||
double precision,intent(in) :: eta
|
||||
logical,intent(in) :: triplet_manifold
|
||||
logical,intent(in) :: triplet
|
||||
integer,intent(in) :: nBas
|
||||
integer,intent(in) :: nC
|
||||
integer,intent(in) :: nO
|
||||
@ -55,7 +54,7 @@ subroutine RPAx(doACFDT,exchange_kernel,singlet_manifold,triplet_manifold,eta, &
|
||||
|
||||
! Singlet manifold
|
||||
|
||||
if(singlet_manifold) then
|
||||
if(singlet) then
|
||||
|
||||
ispin = 1
|
||||
|
||||
@ -69,7 +68,7 @@ subroutine RPAx(doACFDT,exchange_kernel,singlet_manifold,triplet_manifold,eta, &
|
||||
|
||||
! Triplet manifold
|
||||
|
||||
if(triplet_manifold) then
|
||||
if(triplet) then
|
||||
|
||||
ispin = 2
|
||||
|
||||
@ -105,7 +104,7 @@ subroutine RPAx(doACFDT,exchange_kernel,singlet_manifold,triplet_manifold,eta, &
|
||||
write(*,*) '-------------------------------------------------------'
|
||||
write(*,*)
|
||||
|
||||
call ACFDT(exchange_kernel,.false.,.false.,.false.,.false.,.false.,singlet_manifold,triplet_manifold,eta, &
|
||||
call ACFDT(exchange_kernel,.false.,.false.,.false.,.false.,.false.,singlet,triplet,eta, &
|
||||
nBas,nC,nO,nV,nR,nS,ERI,e,e,Omega,XpY,XmY,rho,EcAC)
|
||||
|
||||
if(exchange_kernel) then
|
||||
|
152
src/QuAcK/URPAx.f90
Normal file
152
src/QuAcK/URPAx.f90
Normal file
@ -0,0 +1,152 @@
|
||||
subroutine URPAx(doACFDT,exchange_kernel,spin_conserved,spin_flip,eta,nBas,nC,nO,nV,nR,nS,ENuc,EUHF, &
|
||||
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,e)
|
||||
|
||||
! Perform random phase approximation calculation with exchange (aka TDHF) in the unrestricted formalism
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
include 'quadrature.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
double precision,intent(in) :: eta
|
||||
logical,intent(in) :: doACFDT
|
||||
logical,intent(in) :: exchange_kernel
|
||||
logical,intent(in) :: spin_conserved
|
||||
logical,intent(in) :: spin_flip
|
||||
integer,intent(in) :: nBas
|
||||
integer,intent(in) :: nC(nspin)
|
||||
integer,intent(in) :: nO(nspin)
|
||||
integer,intent(in) :: nV(nspin)
|
||||
integer,intent(in) :: nR(nspin)
|
||||
integer,intent(in) :: nS(nspin)
|
||||
double precision,intent(in) :: ENuc
|
||||
double precision,intent(in) :: EUHF
|
||||
double precision,intent(in) :: e(nBas,nspin)
|
||||
double precision,intent(in) :: ERI_aaaa(nBas,nBas,nBas,nBas)
|
||||
double precision,intent(in) :: ERI_aabb(nBas,nBas,nBas,nBas)
|
||||
double precision,intent(in) :: ERI_bbbb(nBas,nBas,nBas,nBas)
|
||||
double precision,intent(in) :: ERI_abab(nBas,nBas,nBas,nBas)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: ispin
|
||||
|
||||
integer :: nS_aa,nS_bb,nS_sc
|
||||
double precision,allocatable :: Omega_sc(:)
|
||||
double precision,allocatable :: XpY_sc(:,:)
|
||||
double precision,allocatable :: XmY_sc(:,:)
|
||||
|
||||
integer :: nS_ab,nS_ba,nS_sf
|
||||
double precision,allocatable :: Omega_sf(:)
|
||||
double precision,allocatable :: XpY_sf(:,:)
|
||||
double precision,allocatable :: XmY_sf(:,:)
|
||||
|
||||
double precision :: rho_sc,rho_sf
|
||||
double precision :: EcRPAx(nspin)
|
||||
double precision :: EcAC(nspin)
|
||||
|
||||
! Hello world
|
||||
|
||||
write(*,*)
|
||||
write(*,*)'*********************************************************************'
|
||||
write(*,*)'| Unrestricted random phase approximation calculation with exchange |'
|
||||
write(*,*)'*********************************************************************'
|
||||
write(*,*)
|
||||
|
||||
! Initialization
|
||||
|
||||
EcRPAx(:) = 0d0
|
||||
EcAC(:) = 0d0
|
||||
|
||||
! Spin-conserved transitions
|
||||
|
||||
if(spin_conserved) then
|
||||
|
||||
ispin = 1
|
||||
|
||||
! Memory allocation
|
||||
|
||||
nS_aa = nS(1)
|
||||
nS_bb = nS(2)
|
||||
nS_sc = nS_aa + nS_bb
|
||||
|
||||
allocate(Omega_sc(nS_sc),XpY_sc(nS_sc,nS_sc),XmY_sc(nS_sc,nS_sc))
|
||||
|
||||
call unrestricted_linear_response(ispin,.false.,.false.,.false.,eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sc,1d0,e, &
|
||||
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,rho_sc,EcRPAx(ispin),Omega_sc,XpY_sc,XmY_sc)
|
||||
call print_excitation('URPAx ',5,nS_sc,Omega_sc)
|
||||
! call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
|
||||
|
||||
|
||||
endif
|
||||
|
||||
! Spin-flip transitions
|
||||
|
||||
if(spin_flip) then
|
||||
|
||||
ispin = 2
|
||||
|
||||
! Memory allocation
|
||||
|
||||
nS_ab = (nO(1) - nC(1))*(nV(2) - nR(2))
|
||||
nS_ba = (nO(2) - nC(2))*(nV(1) - nR(1))
|
||||
nS_sf = nS_ab + nS_ba
|
||||
|
||||
allocate(Omega_sf(nS_sf),XpY_sf(nS_sf,nS_sf),XmY_sf(nS_sf,nS_sf))
|
||||
|
||||
call unrestricted_linear_response(ispin,.false.,.false.,.false.,eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sf,1d0,e, &
|
||||
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,rho_sf,EcRPAx(ispin),Omega_sf,XpY_sf,XmY_sf)
|
||||
call print_excitation('URPAx ',6,nS_sf,Omega_sf)
|
||||
! call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
|
||||
|
||||
|
||||
endif
|
||||
|
||||
! if(exchange_kernel) then
|
||||
|
||||
! EcRPAx(1) = 0.5d0*EcRPAx(1)
|
||||
! EcRPAx(2) = 1.5d0*EcRPAx(2)
|
||||
|
||||
! end if
|
||||
|
||||
write(*,*)
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@URPAx correlation energy (spin-conserved) =',EcRPAx(1)
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@URPAx correlation energy (spin-flip) =',EcRPAx(2)
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@URPAx correlation energy =',EcRPAx(1) + EcRPAx(2)
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@URPAx total energy =',ENuc + EUHF + EcRPAx(1) + EcRPAx(2)
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,*)
|
||||
|
||||
! Compute the correlation energy via the adiabatic connection
|
||||
|
||||
! if(doACFDT) then
|
||||
|
||||
! write(*,*) '-------------------------------------------------------'
|
||||
! write(*,*) 'Adiabatic connection version of RPAx correlation energy'
|
||||
! write(*,*) '-------------------------------------------------------'
|
||||
! write(*,*)
|
||||
|
||||
! call ACFDT(exchange_kernel,.false.,.false.,.false.,.false.,.false.,singlet,triplet,eta, &
|
||||
! nBas,nC,nO,nV,nR,nS,ERI,e,e,Omega,XpY,XmY,rho,EcAC)
|
||||
|
||||
! if(exchange_kernel) then
|
||||
|
||||
! EcAC(1) = 0.5d0*EcAC(1)
|
||||
! EcAC(2) = 1.5d0*EcAC(2)
|
||||
|
||||
! end if
|
||||
|
||||
! write(*,*)
|
||||
! write(*,*)'-------------------------------------------------------------------------------'
|
||||
! write(*,'(2X,A50,F20.10)') 'AC@RPAx correlation energy (singlet) =',EcAC(1)
|
||||
! write(*,'(2X,A50,F20.10)') 'AC@RPAx correlation energy (triplet) =',EcAC(2)
|
||||
! write(*,'(2X,A50,F20.10)') 'AC@RPAx correlation energy =',EcAC(1) + EcAC(2)
|
||||
! write(*,'(2X,A50,F20.10)') 'AC@RPAx total energy =',ENuc + EUHF + EcAC(1) + EcAC(2)
|
||||
! write(*,*)'-------------------------------------------------------------------------------'
|
||||
! write(*,*)
|
||||
|
||||
! end if
|
||||
|
||||
end subroutine URPAx
|
152
src/QuAcK/UdRPA.f90
Normal file
152
src/QuAcK/UdRPA.f90
Normal file
@ -0,0 +1,152 @@
|
||||
subroutine UdRPA(doACFDT,exchange_kernel,spin_conserved,spin_flip,eta,nBas,nC,nO,nV,nR,nS,ENuc,EUHF, &
|
||||
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,e)
|
||||
|
||||
! Perform random phase approximation calculation with exchange (aka TDHF) in the unrestricted formalism
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
include 'quadrature.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
double precision,intent(in) :: eta
|
||||
logical,intent(in) :: doACFDT
|
||||
logical,intent(in) :: exchange_kernel
|
||||
logical,intent(in) :: spin_conserved
|
||||
logical,intent(in) :: spin_flip
|
||||
integer,intent(in) :: nBas
|
||||
integer,intent(in) :: nC(nspin)
|
||||
integer,intent(in) :: nO(nspin)
|
||||
integer,intent(in) :: nV(nspin)
|
||||
integer,intent(in) :: nR(nspin)
|
||||
integer,intent(in) :: nS(nspin)
|
||||
double precision,intent(in) :: ENuc
|
||||
double precision,intent(in) :: EUHF
|
||||
double precision,intent(in) :: e(nBas,nspin)
|
||||
double precision,intent(in) :: ERI_aaaa(nBas,nBas,nBas,nBas)
|
||||
double precision,intent(in) :: ERI_aabb(nBas,nBas,nBas,nBas)
|
||||
double precision,intent(in) :: ERI_bbbb(nBas,nBas,nBas,nBas)
|
||||
double precision,intent(in) :: ERI_abab(nBas,nBas,nBas,nBas)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: ispin
|
||||
|
||||
integer :: nS_aa,nS_bb,nS_sc
|
||||
double precision,allocatable :: Omega_sc(:)
|
||||
double precision,allocatable :: XpY_sc(:,:)
|
||||
double precision,allocatable :: XmY_sc(:,:)
|
||||
|
||||
integer :: nS_ab,nS_ba,nS_sf
|
||||
double precision,allocatable :: Omega_sf(:)
|
||||
double precision,allocatable :: XpY_sf(:,:)
|
||||
double precision,allocatable :: XmY_sf(:,:)
|
||||
|
||||
double precision :: rho_sc,rho_sf
|
||||
double precision :: EcRPA(nspin)
|
||||
double precision :: EcAC(nspin)
|
||||
|
||||
! Hello world
|
||||
|
||||
write(*,*)
|
||||
write(*,*)'**************************************************************'
|
||||
write(*,*)'| Unrestricted direct random phase approximation calculation |'
|
||||
write(*,*)'**************************************************************'
|
||||
write(*,*)
|
||||
|
||||
! Initialization
|
||||
|
||||
EcRPA(:) = 0d0
|
||||
EcAC(:) = 0d0
|
||||
|
||||
! Spin-conserved transitions
|
||||
|
||||
if(spin_conserved) then
|
||||
|
||||
ispin = 1
|
||||
|
||||
! Memory allocation
|
||||
|
||||
nS_aa = nS(1)
|
||||
nS_bb = nS(2)
|
||||
nS_sc = nS_aa + nS_bb
|
||||
|
||||
allocate(Omega_sc(nS_sc),XpY_sc(nS_sc,nS_sc),XmY_sc(nS_sc,nS_sc))
|
||||
|
||||
call unrestricted_linear_response(ispin,.true.,.false.,.false.,eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sc,1d0,e, &
|
||||
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,rho_sc,EcRPA(ispin),Omega_sc,XpY_sc,XmY_sc)
|
||||
call print_excitation('URPA ',5,nS_sc,Omega_sc)
|
||||
! call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
|
||||
|
||||
|
||||
endif
|
||||
|
||||
! Spin-flip transitions
|
||||
|
||||
if(spin_flip) then
|
||||
|
||||
ispin = 2
|
||||
|
||||
! Memory allocation
|
||||
|
||||
nS_ab = (nO(1) - nC(1))*(nV(2) - nR(2))
|
||||
nS_ba = (nO(2) - nC(2))*(nV(1) - nR(1))
|
||||
nS_sf = nS_ab + nS_ba
|
||||
|
||||
allocate(Omega_sf(nS_sf),XpY_sf(nS_sf,nS_sf),XmY_sf(nS_sf,nS_sf))
|
||||
|
||||
call unrestricted_linear_response(ispin,.true.,.false.,.false.,eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sf,1d0,e, &
|
||||
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,rho_sf,EcRPA(ispin),Omega_sf,XpY_sf,XmY_sf)
|
||||
call print_excitation('URPA ',6,nS_sf,Omega_sf)
|
||||
! call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
|
||||
|
||||
|
||||
endif
|
||||
|
||||
! if(exchange_kernel) then
|
||||
|
||||
! EcRPA(1) = 0.5d0*EcRPA(1)
|
||||
! EcRPA(2) = 1.5d0*EcRPA(2)
|
||||
|
||||
! end if
|
||||
|
||||
write(*,*)
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@URPA correlation energy (spin-conserved) =',EcRPA(1)
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@URPA correlation energy (spin-flip) =',EcRPA(2)
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@URPA correlation energy =',EcRPA(1) + EcRPA(2)
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@URPA total energy =',ENuc + EUHF + EcRPA(1) + EcRPA(2)
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,*)
|
||||
|
||||
! Compute the correlation energy via the adiabatic connection
|
||||
|
||||
! if(doACFDT) then
|
||||
|
||||
! write(*,*) '-------------------------------------------------------'
|
||||
! write(*,*) 'Adiabatic connection version of RPA correlation energy'
|
||||
! write(*,*) '-------------------------------------------------------'
|
||||
! write(*,*)
|
||||
|
||||
! call ACFDT(exchange_kernel,.false.,.false.,.false.,.false.,.false.,singlet,triplet,eta, &
|
||||
! nBas,nC,nO,nV,nR,nS,ERI,e,e,Omega,XpY,XmY,rho,EcAC)
|
||||
|
||||
! if(exchange_kernel) then
|
||||
|
||||
! EcAC(1) = 0.5d0*EcAC(1)
|
||||
! EcAC(2) = 1.5d0*EcAC(2)
|
||||
|
||||
! end if
|
||||
|
||||
! write(*,*)
|
||||
! write(*,*)'-------------------------------------------------------------------------------'
|
||||
! write(*,'(2X,A50,F20.10)') 'AC@RPA correlation energy (singlet) =',EcAC(1)
|
||||
! write(*,'(2X,A50,F20.10)') 'AC@RPA correlation energy (triplet) =',EcAC(2)
|
||||
! write(*,'(2X,A50,F20.10)') 'AC@RPA correlation energy =',EcAC(1) + EcAC(2)
|
||||
! write(*,'(2X,A50,F20.10)') 'AC@RPA total energy =',ENuc + EUHF + EcAC(1) + EcAC(2)
|
||||
! write(*,*)'-------------------------------------------------------------------------------'
|
||||
! write(*,*)
|
||||
|
||||
! end if
|
||||
|
||||
end subroutine UdRPA
|
@ -1,4 +1,4 @@
|
||||
subroutine RPA(doACFDT,exchange_kernel,singlet_manifold,triplet_manifold,eta, &
|
||||
subroutine dRPA(doACFDT,exchange_kernel,singlet_manifold,triplet_manifold,eta, &
|
||||
nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,e)
|
||||
|
||||
! Perform a direct random phase approximation calculation
|
||||
@ -125,4 +125,4 @@ subroutine RPA(doACFDT,exchange_kernel,singlet_manifold,triplet_manifold,eta, &
|
||||
|
||||
end if
|
||||
|
||||
end subroutine RPA
|
||||
end subroutine dRPA
|
Loading…
Reference in New Issue
Block a user