mirror of
https://github.com/pfloos/quack
synced 2024-11-05 21:53:56 +01:00
create utils
This commit is contained in:
parent
0bb4e5f373
commit
ca3a985d50
@ -35,13 +35,13 @@ subroutine CalcBoysF(maxm,t,Fm)
|
||||
do m=0,maxm
|
||||
dm = dble(m)
|
||||
Fm(m) = 1d0/(2d0*dm+1d0)
|
||||
enddo
|
||||
end do
|
||||
else
|
||||
do m=0,maxm
|
||||
dm = dble(m)
|
||||
! Fm(m) = gamma(dm+0.5d0)*gsl_sf_gamma_inc_P(dm+0.5d0,t)/(2d0*t**(dm+0.5d0))
|
||||
Fm(m) = dgami(dm+0.5d0,t)/(2d0*t**(dm+0.5d0))
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
end if
|
||||
|
||||
end subroutine CalcBoysF
|
||||
|
@ -33,7 +33,7 @@ subroutine CalcOm(maxm,ExpPQi,NormPQSq,Om)
|
||||
do m=0,maxm
|
||||
dm =dble(m)
|
||||
Om(m) = (2d0/sqrt(pi))*(-1d0)**dm*(1d0/ExpPQi)**(dm+0.5d0)*Fm(m)
|
||||
enddo
|
||||
end do
|
||||
|
||||
deallocate(Fm)
|
||||
|
||||
|
@ -37,7 +37,7 @@ subroutine CalcOm3e(maxm,delta0,delta1,Y1,Y0,Om)
|
||||
do m=0,maxm
|
||||
Om(m) = (2d0/sqrt(pi))*OG*sqrt(delta0/(delta1-delta0))*(delta1/(delta1-delta0))**m
|
||||
Om(m) = Om(m)*Fm(m)
|
||||
enddo
|
||||
end do
|
||||
|
||||
deallocate(Fm)
|
||||
|
||||
|
@ -32,7 +32,7 @@ subroutine CalcOmERI(maxm,ExpY,NormYSq,Om)
|
||||
|
||||
do m=0,maxm
|
||||
Om(m) = (2d0/sqrt(pi))*sqrt(ExpY)*Fm(m)
|
||||
enddo
|
||||
end do
|
||||
|
||||
deallocate(Fm)
|
||||
|
||||
|
@ -32,7 +32,7 @@ subroutine CalcOmErf(maxm,ExpY,fG,NormYSq,Om)
|
||||
|
||||
do m=0,maxm
|
||||
Om(m) = (2d0/sqrt(pi))*sqrt(fG)*(fG/ExpY)**m*Fm(m)
|
||||
enddo
|
||||
end do
|
||||
|
||||
deallocate(Fm)
|
||||
|
||||
|
@ -33,7 +33,7 @@ subroutine CalcOmNuc(maxm,ExpPQi,NormPQSq,Om)
|
||||
do m=0,maxm
|
||||
dm =dble(m)
|
||||
Om(m) = (2d0/sqrt(pi))*(1d0/ExpPQi)**(dm+0.5d0)*Fm(m)
|
||||
enddo
|
||||
end do
|
||||
|
||||
deallocate(Fm)
|
||||
|
||||
|
@ -34,9 +34,9 @@ subroutine CalcOmYuk(maxm,ExpG,ExpY,fG,NormYSq,Om)
|
||||
Om(m) = 0d0
|
||||
do k=0,m
|
||||
Om(m) = Om(m) + dbinom(m,k)*(ExpY/ExpG)**k*Fm(k)
|
||||
enddo
|
||||
end do
|
||||
Om(m) = (2d0/sqrt(pi))*sqrt(ExpY)*(fG/ExpG)*exp(-fG*NormYSq)*Om(m)
|
||||
enddo
|
||||
end do
|
||||
|
||||
deallocate(Fm)
|
||||
|
||||
|
@ -32,7 +32,7 @@ subroutine Compute2eInt(debug,chemist_notation,iType,nShell, &
|
||||
integer,allocatable :: ShellFunctionB1(:,:),ShellFunctionB2(:,:)
|
||||
double precision :: ExpBra(2),ExpKet(2)
|
||||
double precision :: DBra(2),DKet(2)
|
||||
double precision :: NormCoeff
|
||||
double precision :: norm_coeff
|
||||
|
||||
integer :: iBasA1,iBasA2,iBasB1,iBasB2
|
||||
integer :: iShA1,iShA2,iShB1,iShB2
|
||||
@ -110,7 +110,7 @@ subroutine Compute2eInt(debug,chemist_notation,iType,nShell, &
|
||||
iFile = 24
|
||||
open(unit=iFile,file='int/Erf.dat')
|
||||
|
||||
endif
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell A1
|
||||
@ -213,16 +213,16 @@ subroutine Compute2eInt(debug,chemist_notation,iType,nShell, &
|
||||
|
||||
do iKA1=1,KBra(1)
|
||||
ExpBra(1) = ExpShell(iShA1,iKA1)
|
||||
DBra(1) = DShell(iShA1,iKA1)*NormCoeff(ExpBra(1),AngMomBra(1,1:3))
|
||||
DBra(1) = DShell(iShA1,iKA1)*norm_coeff(ExpBra(1),AngMomBra(1,1:3))
|
||||
do iKA2=1,KBra(2)
|
||||
ExpBra(2) = ExpShell(iShA2,iKA2)
|
||||
DBra(2) = DShell(iShA2,iKA2)*NormCoeff(ExpBra(2),AngMomBra(2,1:3))
|
||||
DBra(2) = DShell(iShA2,iKA2)*norm_coeff(ExpBra(2),AngMomBra(2,1:3))
|
||||
do iKB1=1,KKet(1)
|
||||
ExpKet(1) = ExpShell(iShB1,iKB1)
|
||||
DKet(1) = DShell(iShB1,iKB1)*NormCoeff(ExpKet(1),AngMomKet(1,1:3))
|
||||
DKet(1) = DShell(iShB1,iKB1)*norm_coeff(ExpKet(1),AngMomKet(1,1:3))
|
||||
do iKB2=1,KKet(2)
|
||||
ExpKet(2) = ExpShell(iShB2,iKB2)
|
||||
DKet(2) = DShell(iShB2,iKB2)*NormCoeff(ExpKet(2),AngMomKet(2,1:3))
|
||||
DKet(2) = DShell(iShB2,iKB2)*norm_coeff(ExpKet(2),AngMomKet(2,1:3))
|
||||
|
||||
call S2eInt(debug,iType,np2eInt,nSigp2eInt, &
|
||||
ExpS,KG,DG,ExpG, &
|
||||
@ -232,10 +232,10 @@ subroutine Compute2eInt(debug,chemist_notation,iType,nShell, &
|
||||
|
||||
c2eInt = c2eInt + DBra(1)*DBra(2)*DKet(1)*DKet(2)*p2eInt
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call cpu_time(end_c2eInt)
|
||||
|
||||
nc2eInt = nc2eInt + 1
|
||||
@ -252,7 +252,7 @@ subroutine Compute2eInt(debug,chemist_notation,iType,nShell, &
|
||||
if(debug) then
|
||||
write(*,'(A10,1X,F16.10,1X,I6,1X,I6,1X,I6,1X,I6)') &
|
||||
'(a1b1|a2b2) = ',c2eInt,iBasA1,iBasB1,iBasA2,iBasB2
|
||||
endif
|
||||
end if
|
||||
|
||||
else
|
||||
|
||||
@ -261,38 +261,38 @@ subroutine Compute2eInt(debug,chemist_notation,iType,nShell, &
|
||||
if(debug) then
|
||||
write(*,'(A10,1X,F16.10,1X,I6,1X,I6,1X,I6,1X,I6)') &
|
||||
'<a1a2|b1b2> = ',c2eInt,iBasA1,iBasA2,iBasB1,iBasB2
|
||||
endif
|
||||
end if
|
||||
|
||||
endif
|
||||
endif
|
||||
end if
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over contraction degrees
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionB2)
|
||||
enddo
|
||||
end do
|
||||
iBasB2 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell B2
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionA2)
|
||||
enddo
|
||||
end do
|
||||
iBasA2 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell A2
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionB1)
|
||||
enddo
|
||||
end do
|
||||
iBasB1 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell B1
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionA1)
|
||||
enddo
|
||||
end do
|
||||
iBasA1 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell A1
|
||||
|
@ -32,7 +32,7 @@ subroutine Compute3eInt(debug,iType,nShell, &
|
||||
integer,allocatable :: ShellFunctionB1(:,:),ShellFunctionB2(:,:),ShellFunctionB3(:,:)
|
||||
double precision :: ExpBra(3),ExpKet(3)
|
||||
double precision :: DBra(3),DKet(3)
|
||||
double precision :: NormCoeff
|
||||
double precision :: norm_coeff
|
||||
|
||||
integer :: iBasA1,iBasA2,iBasA3,iBasB1,iBasB2,iBasB3
|
||||
integer :: iShA1,iShA2,iShA3,iShB1,iShB2,iShB3
|
||||
@ -80,7 +80,7 @@ subroutine Compute3eInt(debug,iType,nShell, &
|
||||
elseif(iType == 3) then
|
||||
iFile = 33
|
||||
open(unit=iFile,file='int/3eInt_Type3.dat')
|
||||
endif
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell A1
|
||||
@ -229,22 +229,22 @@ subroutine Compute3eInt(debug,iType,nShell, &
|
||||
|
||||
do iKA1=1,KBra(1)
|
||||
ExpBra(1) = ExpShell(iShA1,iKA1)
|
||||
DBra(1) = DShell(iShA1,iKA1)*NormCoeff(ExpBra(1),AngMomBra(1,1:3))
|
||||
DBra(1) = DShell(iShA1,iKA1)*norm_coeff(ExpBra(1),AngMomBra(1,1:3))
|
||||
do iKA2=1,KBra(2)
|
||||
ExpBra(2) = ExpShell(iShA2,iKA2)
|
||||
DBra(2) = DShell(iShA2,iKA2)*NormCoeff(ExpBra(2),AngMomBra(2,1:3))
|
||||
DBra(2) = DShell(iShA2,iKA2)*norm_coeff(ExpBra(2),AngMomBra(2,1:3))
|
||||
do iKA3=1,KBra(3)
|
||||
ExpBra(3) = ExpShell(iShA3,iKA3)
|
||||
DBra(3) = DShell(iShA3,iKA3)*NormCoeff(ExpBra(3),AngMomBra(3,1:3))
|
||||
DBra(3) = DShell(iShA3,iKA3)*norm_coeff(ExpBra(3),AngMomBra(3,1:3))
|
||||
do iKB1=1,KKet(1)
|
||||
ExpKet(1) = ExpShell(iShB1,iKB1)
|
||||
DKet(1) = DShell(iShB1,iKB1)*NormCoeff(ExpKet(1),AngMomKet(1,1:3))
|
||||
DKet(1) = DShell(iShB1,iKB1)*norm_coeff(ExpKet(1),AngMomKet(1,1:3))
|
||||
do iKB2=1,KKet(2)
|
||||
ExpKet(2) = ExpShell(iShB2,iKB2)
|
||||
DKet(2) = DShell(iShB2,iKB2)*NormCoeff(ExpKet(2),AngMomKet(2,1:3))
|
||||
DKet(2) = DShell(iShB2,iKB2)*norm_coeff(ExpKet(2),AngMomKet(2,1:3))
|
||||
do iKB3=1,KKet(3)
|
||||
ExpKet(3) = ExpShell(iShB3,iKB3)
|
||||
DKet(3) = DShell(iShB3,iKB3)*NormCoeff(ExpKet(3),AngMomKet(3,1:3))
|
||||
DKet(3) = DShell(iShB3,iKB3)*norm_coeff(ExpKet(3),AngMomKet(3,1:3))
|
||||
|
||||
call S3eInt(debug,iType,np3eInt,nSigp3eInt, &
|
||||
ExpS,KG,DG,ExpG, &
|
||||
@ -254,12 +254,12 @@ subroutine Compute3eInt(debug,iType,nShell, &
|
||||
|
||||
c3eInt = c3eInt + DBra(1)*DBra(2)*DBra(3)*DKet(1)*DKet(2)*DKet(3)*p3eInt
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call cpu_time(end_c3eInt)
|
||||
|
||||
nc3eInt = nc3eInt + 1
|
||||
@ -271,50 +271,50 @@ subroutine Compute3eInt(debug,iType,nShell, &
|
||||
if(.true.) then
|
||||
write(*,'(A15,1X,I6,1X,I6,1X,I6,1X,I6,1X,I6,1X,I6,1X,F16.10)') &
|
||||
'(a1a2a3|b1b2b3) = ',iBasA1,iBasA2,iBasA3,iBasB1,iBasB2,iBasB3,c3eInt
|
||||
endif
|
||||
endif
|
||||
end if
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over contraction degrees
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionB3)
|
||||
enddo
|
||||
end do
|
||||
iBasB3 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell B3
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionB2)
|
||||
enddo
|
||||
end do
|
||||
iBasB2 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell B2
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionB1)
|
||||
enddo
|
||||
end do
|
||||
iBasB1 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell B1
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionA3)
|
||||
enddo
|
||||
end do
|
||||
iBasA3 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell A3
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionA2)
|
||||
enddo
|
||||
end do
|
||||
iBasA2 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell A2
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionA1)
|
||||
enddo
|
||||
end do
|
||||
iBasA1 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell A1
|
||||
|
@ -29,7 +29,7 @@ subroutine Compute4eInt(debug,nEl,iType,nShell,ExpS, &
|
||||
ShellFunctionC(:,:),ShellFunctionD(:,:)
|
||||
double precision :: ExpA,ExpB,ExpC,ExpD
|
||||
double precision,allocatable :: DA,DB,DC,DD
|
||||
double precision :: NormCoeff
|
||||
double precision :: norm_coeff
|
||||
|
||||
integer :: iBasA,iBasB,iBasC,iBasD
|
||||
integer :: iShA,iShB,iShC,iShD
|
||||
@ -166,16 +166,16 @@ subroutine Compute4eInt(debug,nEl,iType,nShell,ExpS, &
|
||||
|
||||
do iKA=1,KA
|
||||
ExpA = ExpShell(iShA,iKA)
|
||||
DA = DShell(iShA,iKA)*NormCoeff(ExpA,AngMomA)
|
||||
DA = DShell(iShA,iKA)*norm_coeff(ExpA,AngMomA)
|
||||
do iKB=1,KB
|
||||
ExpB = ExpShell(iShB,iKB)
|
||||
DB = DShell(iShB,iKB)*NormCoeff(ExpB,AngMomB)
|
||||
DB = DShell(iShB,iKB)*norm_coeff(ExpB,AngMomB)
|
||||
do iKC=1,KC
|
||||
ExpC = ExpShell(iShC,iKC)
|
||||
DC = DShell(iShC,iKC)*NormCoeff(ExpC,AngMomC)
|
||||
DC = DShell(iShC,iKC)*norm_coeff(ExpC,AngMomC)
|
||||
do iKD=1,KD
|
||||
ExpD = ExpShell(iShD,iKD)
|
||||
DD = DShell(iShD,iKD)*NormCoeff(ExpD,AngMomD)
|
||||
DD = DShell(iShD,iKD)*norm_coeff(ExpD,AngMomD)
|
||||
|
||||
! Erf module
|
||||
! call ErfInt(debug,npErf,nSigpErf, &
|
||||
@ -188,10 +188,10 @@ subroutine Compute4eInt(debug,nEl,iType,nShell,ExpS, &
|
||||
|
||||
! cErf = cErf + DA*DB*DC*DD*pErf
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call cpu_time(end_cErf)
|
||||
|
||||
ncErf = ncErf + 1
|
||||
@ -203,36 +203,36 @@ subroutine Compute4eInt(debug,nEl,iType,nShell,ExpS, &
|
||||
if(debug) then
|
||||
write(*,'(A10,1X,F16.10,1X,I6,1X,I6,1X,I6,1X,I6)') &
|
||||
'(ab|erf(r)/r|cd) = ',cErf,iBasA,iBasB,iBasC,iBasD
|
||||
endif
|
||||
endif
|
||||
end if
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over contraction degrees
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionD)
|
||||
enddo
|
||||
end do
|
||||
iBasD = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell D
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionC)
|
||||
enddo
|
||||
end do
|
||||
iBasC = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell C
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionB)
|
||||
enddo
|
||||
end do
|
||||
iBasB = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell B
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionA)
|
||||
enddo
|
||||
end do
|
||||
iBasA = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell A
|
||||
|
@ -26,7 +26,7 @@ subroutine ComputeKin(debug,nShell, &
|
||||
integer,allocatable :: ShellFunctionA(:,:),ShellFunctionB(:,:)
|
||||
double precision :: ExpA,ExpB
|
||||
double precision,allocatable :: DA,DB
|
||||
double precision :: NormCoeff
|
||||
double precision :: norm_coeff
|
||||
|
||||
integer :: iBasA,iBasB
|
||||
integer :: iShA,iShB
|
||||
@ -115,10 +115,10 @@ subroutine ComputeKin(debug,nShell, &
|
||||
|
||||
do iKA=1,KA
|
||||
ExpA = ExpShell(iShA,iKA)
|
||||
DA = DShell(iShA,iKA)*NormCoeff(ExpA,AngMomA)
|
||||
DA = DShell(iShA,iKA)*norm_coeff(ExpA,AngMomA)
|
||||
do iKB=1,KB
|
||||
ExpB = ExpShell(iShB,iKB)
|
||||
DB = DShell(iShB,iKB)*NormCoeff(ExpB,AngMomB)
|
||||
DB = DShell(iShB,iKB)*norm_coeff(ExpB,AngMomB)
|
||||
|
||||
call KinInt(npKin,nSigpKin, &
|
||||
ExpA,CenterA,AngMomA, &
|
||||
@ -127,8 +127,8 @@ subroutine ComputeKin(debug,nShell, &
|
||||
|
||||
cKin = cKin + DA*DB*pKin
|
||||
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
call cpu_time(end_cKin)
|
||||
|
||||
ncKin = ncKin + 1
|
||||
@ -138,21 +138,21 @@ subroutine ComputeKin(debug,nShell, &
|
||||
write(9,'(I6,I6,F20.15)') iBasA,iBasB,cKin
|
||||
if(debug) then
|
||||
write(*,'(A10,1X,F16.10,1X,I6,1X,I6)') '(a|T|b) = ',cKin,iBasA,iBasB
|
||||
endif
|
||||
endif
|
||||
end if
|
||||
end if
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over contraction degrees
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionB)
|
||||
enddo
|
||||
end do
|
||||
iBasB = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell B
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionA)
|
||||
enddo
|
||||
end do
|
||||
iBasA = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell A
|
||||
|
@ -29,7 +29,7 @@ subroutine ComputeNuc(debug,nShell, &
|
||||
integer,allocatable :: ShellFunctionA(:,:),ShellFunctionB(:,:)
|
||||
double precision :: ExpA,ExpB,ZC
|
||||
double precision,allocatable :: DA,DB
|
||||
double precision :: NormCoeff
|
||||
double precision :: norm_coeff
|
||||
|
||||
integer :: iBasA,iBasB
|
||||
integer :: iShA,iShB,iNucC
|
||||
@ -131,10 +131,10 @@ subroutine ComputeNuc(debug,nShell, &
|
||||
|
||||
do iKA=1,KA
|
||||
ExpA = ExpShell(iShA,iKA)
|
||||
DA = DShell(iShA,iKA)*NormCoeff(ExpA,AngMomA)
|
||||
DA = DShell(iShA,iKA)*norm_coeff(ExpA,AngMomA)
|
||||
do iKB=1,KB
|
||||
ExpB = ExpShell(iShB,iKB)
|
||||
DB = DShell(iShB,iKB)*NormCoeff(ExpB,AngMomB)
|
||||
DB = DShell(iShB,iKB)*norm_coeff(ExpB,AngMomB)
|
||||
|
||||
call NucInt(debug,npNuc,nSigpNuc, &
|
||||
ExpA,CenterA,AngMomA, &
|
||||
@ -144,12 +144,12 @@ subroutine ComputeNuc(debug,nShell, &
|
||||
|
||||
cNuc = cNuc - DA*DB*ZC*pNuc
|
||||
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over contraction degrees
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
call cpu_time(end_cNuc)
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over nuclear centers C
|
||||
@ -163,19 +163,19 @@ subroutine ComputeNuc(debug,nShell, &
|
||||
if(debug) then
|
||||
write(*,'(A10,1X,F16.10,1X,I6,1X,I6)') '(a|V|b) = ',cNuc,iBasA,iBasB
|
||||
write(*,*)
|
||||
endif
|
||||
endif
|
||||
end if
|
||||
end if
|
||||
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionB)
|
||||
enddo
|
||||
end do
|
||||
iBasB = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell B
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionA)
|
||||
enddo
|
||||
end do
|
||||
iBasA = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell A
|
||||
|
@ -26,7 +26,7 @@ subroutine ComputeOv(debug,nBas,nShell, &
|
||||
integer,allocatable :: ShellFunctionA(:,:),ShellFunctionB(:,:)
|
||||
double precision :: ExpA,ExpB
|
||||
double precision,allocatable :: DA,DB
|
||||
double precision :: NormCoeff
|
||||
double precision :: norm_coeff
|
||||
|
||||
integer :: iBasA,iBasB
|
||||
integer :: iShA,iShB
|
||||
@ -117,10 +117,10 @@ subroutine ComputeOv(debug,nBas,nShell, &
|
||||
|
||||
do iKA=1,KA
|
||||
ExpA = ExpShell(iShA,iKA)
|
||||
DA = DShell(iShA,iKA)*NormCoeff(ExpA,AngMomA)
|
||||
DA = DShell(iShA,iKA)*norm_coeff(ExpA,AngMomA)
|
||||
do iKB=1,KB
|
||||
ExpB = ExpShell(iShB,iKB)
|
||||
DB = DShell(iShB,iKB)*NormCoeff(ExpB,AngMomB)
|
||||
DB = DShell(iShB,iKB)*norm_coeff(ExpB,AngMomB)
|
||||
|
||||
call OvInt(npOv,nSigpOv, &
|
||||
ExpA,CenterA,AngMomA, &
|
||||
@ -129,8 +129,8 @@ subroutine ComputeOv(debug,nBas,nShell, &
|
||||
|
||||
cOv = cOv + DA*DB*pOv
|
||||
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
call cpu_time(end_cOv)
|
||||
|
||||
ncOv = ncOv + 1
|
||||
@ -141,22 +141,22 @@ subroutine ComputeOv(debug,nBas,nShell, &
|
||||
write(8,'(I6,I6,F20.15)') iBasA,iBasB,cOv
|
||||
if(debug) then
|
||||
write(*,'(A10,1X,F16.10,1X,I6,1X,I6)') '(a|b) = ',cOv,iBasA,iBasB
|
||||
endif
|
||||
endif
|
||||
end if
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over contraction degrees
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionB)
|
||||
enddo
|
||||
end do
|
||||
iBasB = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell B
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
end do
|
||||
deallocate(ShellFunctionA)
|
||||
enddo
|
||||
end do
|
||||
iBasA = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell A
|
||||
|
@ -44,7 +44,7 @@ subroutine FormVRR3e(ExpZ,ExpG,CenterZ,DY0,DY1,D2Y0,D2Y1,delta0,delta1,Y0,Y1)
|
||||
|
||||
do i=1,3
|
||||
ZetaMat(i,i) = ExpZ(i)
|
||||
enddo
|
||||
end do
|
||||
|
||||
! print*,'Zeta'
|
||||
! call matout(3,3,ZetaMat)
|
||||
@ -64,20 +64,20 @@ subroutine FormVRR3e(ExpZ,ExpG,CenterZ,DY0,DY1,D2Y0,D2Y1,delta0,delta1,Y0,Y1)
|
||||
do i=1,3
|
||||
do j=1,i-1
|
||||
GMat(i,j) = - ExpG(j,i)
|
||||
enddo
|
||||
end do
|
||||
do j=i+1,3
|
||||
GMat(i,j) = - ExpG(i,j)
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
|
||||
do i=1,3
|
||||
do j=1,i-1
|
||||
GMat(i,i) = GMat(i,i) + ExpG(j,i)
|
||||
enddo
|
||||
end do
|
||||
do j=i+1,3
|
||||
GMat(i,i) = GMat(i,i) + ExpG(i,j)
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
|
||||
! print*,'G'
|
||||
! call matout(3,3,GMat)
|
||||
@ -89,10 +89,10 @@ subroutine FormVRR3e(ExpZ,ExpG,CenterZ,DY0,DY1,D2Y0,D2Y1,delta0,delta1,Y0,Y1)
|
||||
do k=1,3
|
||||
CenterY(i,j,k) = CenterZ(i,k) - CenterZ(j,k)
|
||||
Y2Mat(i,j) = Y2Mat(i,j) + CenterY(i,j,k)**2
|
||||
enddo
|
||||
end do
|
||||
YMat(i,j) = sqrt(Y2Mat(i,j))
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
|
||||
! print*,'Y'
|
||||
! call matout(3,3,YMat)
|
||||
@ -106,8 +106,8 @@ subroutine FormVRR3e(ExpZ,ExpG,CenterZ,DY0,DY1,D2Y0,D2Y1,delta0,delta1,Y0,Y1)
|
||||
do j=1,3
|
||||
Delta0Mat(i,j) = ZetaMat(i,j) + GMat(i,j)
|
||||
Delta1Mat(i,j) = Delta0Mat(i,j) + CMat(i,j)
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
|
||||
! Form the DY and D2Y matrices
|
||||
|
||||
@ -117,10 +117,10 @@ subroutine FormVRR3e(ExpZ,ExpG,CenterZ,DY0,DY1,D2Y0,D2Y1,delta0,delta1,Y0,Y1)
|
||||
DYMat(i,j,k) = KappaCross(i,j,k)*YMat(j,k)/ExpZ(i)
|
||||
do l=1,3
|
||||
D2YMat(i,j,k,l) = 0.5d0*KappaCross(i,k,l)*KappaCross(j,k,l)/(ExpZ(i)*ExpZ(j))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
! Compute the inverse of the Delta0 and Delta1 matrices
|
||||
|
||||
@ -130,8 +130,8 @@ subroutine FormVRR3e(ExpZ,ExpG,CenterZ,DY0,DY1,D2Y0,D2Y1,delta0,delta1,Y0,Y1)
|
||||
do j=1,3
|
||||
InvDelta0Mat(i,j) = Delta0Mat(i,j)
|
||||
InvDelta1Mat(i,j) = Delta1Mat(i,j)
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
! call amove(3,3,Delta0Mat,InvDelta0Mat)
|
||||
! call amove(3,3,Delta1Mat,InvDelta1Mat)
|
||||
|
||||
@ -150,10 +150,10 @@ subroutine FormVRR3e(ExpZ,ExpG,CenterZ,DY0,DY1,D2Y0,D2Y1,delta0,delta1,Y0,Y1)
|
||||
do l=1,3
|
||||
D0Mat(i,j) = D0Mat(i,k) + ZetaMat(i,k)*InvDelta0Mat(k,l)*ZetaMat(l,j)
|
||||
D1Mat(i,j) = D1Mat(i,k) + ZetaMat(i,k)*InvDelta1Mat(k,l)*ZetaMat(l,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
! Form the derivative matrices
|
||||
|
||||
@ -163,8 +163,8 @@ subroutine FormVRR3e(ExpZ,ExpG,CenterZ,DY0,DY1,D2Y0,D2Y1,delta0,delta1,Y0,Y1)
|
||||
do j=1,3
|
||||
call CalcTrAB(3,D0Mat,D2YMat,D2Y0(i,j))
|
||||
call CalcTrAB(3,D1Mat,D2YMat,D2Y1(i,j))
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
|
||||
! Compute Y0 and Y1
|
||||
|
||||
|
@ -40,7 +40,7 @@ function G2eInt(debug,iType, &
|
||||
|
||||
do i=1,2
|
||||
ExpZi(i) = 1d0/(ExpBra(i) + ExpKet(i))
|
||||
enddo
|
||||
end do
|
||||
|
||||
NormABSq = 0d0
|
||||
do j=1,3
|
||||
@ -49,20 +49,20 @@ function G2eInt(debug,iType, &
|
||||
CenterAB(i,j) = CenterBra(i,j) - CenterKet(i,j)
|
||||
CenterZA(i,j) = CenterZ(i,j) - CenterBra(i,j)
|
||||
NormABSq(i) = NormABSq(i) + CenterAB(i,j)**2
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
|
||||
do i=1,2
|
||||
GAB(i) = (pi*ExpZi(i))**(1.5d0)*exp(-ExpBra(i)*ExpKet(i)*NormABSq(i)*ExpZi(i))
|
||||
enddo
|
||||
end do
|
||||
|
||||
! Pre-computed shell-quartet quantities
|
||||
|
||||
do i=1,2
|
||||
do j=1,2
|
||||
ExpY(i,j) = 1d0/(ExpZi(i) + ExpZi(j))
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
|
||||
do i=1,2
|
||||
do j=1,2
|
||||
@ -70,9 +70,9 @@ function G2eInt(debug,iType, &
|
||||
do k=1,3
|
||||
CenterY(i,j,k) = CenterZ(i,k) - CenterZ(j,k)
|
||||
NormYSq(i,j) = NormYSq(i,j) + CenterY(i,j,k)**2
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
! fG = (ExpZ(1)*ExpZ(2)*ExpG)/(ExpZ(1)*ExpZ(2) + ExpZ(1)*ExpG + ExpZ(2)*ExpG)
|
||||
fG = 1d0/(ExpZi(1) + 1d0/ExpG + ExpZi(2))
|
||||
@ -84,7 +84,7 @@ function G2eInt(debug,iType, &
|
||||
TotAngMomBra(i) = AngMomBra(i,1) + AngMomBra(i,2) + AngMomBra(i,3)
|
||||
TotAngMomKet(i) = AngMomKet(i,1) + AngMomKet(i,2) + AngMomKet(i,3)
|
||||
maxm = maxm + TotAngMomBra(i) + TotAngMomKet(i)
|
||||
enddo
|
||||
end do
|
||||
|
||||
! Pre-compute (00|00)^m
|
||||
|
||||
@ -97,7 +97,7 @@ function G2eInt(debug,iType, &
|
||||
call CalcOmYuk(maxm,ExpG,ExpY(1,2),fG,NormYSq(1,2),Om)
|
||||
elseif(iType == 4) then
|
||||
call CalcOmErf(maxm,ExpY(1,2),fG,NormYSq(1,2),Om)
|
||||
endif
|
||||
end if
|
||||
|
||||
call cpu_time(finish_Om)
|
||||
|
||||
@ -107,9 +107,9 @@ function G2eInt(debug,iType, &
|
||||
write(*,*) '(00|00)^m'
|
||||
do i=0,maxm
|
||||
write(*,*) i,Om(i)
|
||||
enddo
|
||||
end do
|
||||
write(*,*)
|
||||
endif
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Launch reccurence relations!
|
||||
@ -121,10 +121,10 @@ function G2eInt(debug,iType, &
|
||||
a1a2b1b2 = Om(0)
|
||||
else
|
||||
a1a2b1b2 = VRR2e(0,AngMomBra,maxm,Om,ExpZi,ExpY,CenterZA,CenterY)
|
||||
endif
|
||||
end if
|
||||
else
|
||||
a1a2b1b2 = HRR2e(AngMomBra,AngMomKet,maxm,Om,ExpZi,ExpY,CenterAB,CenterZA,CenterY)
|
||||
endif
|
||||
end if
|
||||
|
||||
call cpu_time(finish_RR)
|
||||
|
||||
|
@ -49,7 +49,7 @@ function G3eInt(debug,iType, &
|
||||
|
||||
do i=1,3
|
||||
ExpZ(i) = ExpBra(i) + ExpKet(i)
|
||||
enddo
|
||||
end do
|
||||
|
||||
NormABSq = 0d0
|
||||
do i=1,3
|
||||
@ -58,12 +58,12 @@ function G3eInt(debug,iType, &
|
||||
CenterAB(i,j) = CenterBra(i,j) - CenterKet(i,j)
|
||||
CenterZA(i,j) = CenterZ(i,j) - CenterBra(i,j)
|
||||
NormABSq(i) = NormABSq(i) + CenterAB(i,j)**2
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
|
||||
do i=1,3
|
||||
GAB(i) = (pi/ExpZ(i))**(1.5d0)*exp(-ExpBra(i)*ExpKet(i)*NormABSq(i)/ExpZ(i))
|
||||
enddo
|
||||
end do
|
||||
|
||||
! Pre-computed shell-sextet quantities
|
||||
|
||||
@ -76,7 +76,7 @@ function G3eInt(debug,iType, &
|
||||
TotAngMomBra(i) = AngMomBra(i,1) + AngMomBra(i,2) + AngMomBra(i,3)
|
||||
TotAngMomKet(i) = AngMomKet(i,1) + AngMomKet(i,2) + AngMomKet(i,3)
|
||||
maxm = maxm + TotAngMomBra(i) + TotAngMomKet(i)
|
||||
enddo
|
||||
end do
|
||||
|
||||
! Pre-compute (000|000)^m
|
||||
|
||||
@ -91,9 +91,9 @@ function G3eInt(debug,iType, &
|
||||
write(*,*) '(000|000)^m'
|
||||
do i=0,maxm
|
||||
write(*,*) i,Om(i)
|
||||
enddo
|
||||
end do
|
||||
write(*,*)
|
||||
endif
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Launch reccurence relations!
|
||||
@ -104,10 +104,10 @@ function G3eInt(debug,iType, &
|
||||
a1a2a3b1b2b3 = Om(0)
|
||||
else
|
||||
a1a2a3b1b2b3 = VRR3e(0,AngMomBra,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
endif
|
||||
end if
|
||||
else
|
||||
a1a2a3b1b2b3 = HRR3e(AngMomBra,AngMomKet,maxm,Om,ExpZ,CenterAB,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
endif
|
||||
end if
|
||||
|
||||
|
||||
call cpu_time(finish_RR)
|
||||
|
@ -87,7 +87,7 @@ function GF12Int(ExpG,ExpA,CenterA,AngMomA,ExpB,CenterB,AngMomB,ExpC,CenterC,Ang
|
||||
do i=1,3
|
||||
CenterRA(i) = CenterP(i) - CenterA(i) + fP*(CenterQ(i) - CenterP(i))
|
||||
CenterRC(i) = CenterQ(i) - CenterC(i) + fQ*(CenterP(i) - CenterQ(i))
|
||||
enddo
|
||||
end do
|
||||
!------------------------------------------------------------------------
|
||||
! Launch reccurence relations!
|
||||
!------------------------------------------------------------------------
|
||||
|
@ -23,8 +23,8 @@ subroutine GenerateShell(atot,nShellFunction,ShellFunction)
|
||||
ShellFunction(ia,1) = ax
|
||||
ShellFunction(ia,2) = ay
|
||||
ShellFunction(ia,3) = az
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
|
||||
end subroutine GenerateShell
|
||||
|
@ -31,7 +31,7 @@ recursive function HRR2e(AngMomBra,AngMomKet, &
|
||||
NegAngMomKet(i) = AngMomKet(i,1) < 0 .or. AngMomKet(i,2) < 0 .or. AngMomKet(i,3) < 0
|
||||
TotAngMomBra(i) = AngMomBra(i,1) + AngMomBra(i,2) + AngMomBra(i,3)
|
||||
TotAngMomKet(i) = AngMomKet(i,1) + AngMomKet(i,2) + AngMomKet(i,3)
|
||||
enddo
|
||||
end do
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Termination condition
|
||||
@ -52,8 +52,8 @@ recursive function HRR2e(AngMomBra,AngMomKet, &
|
||||
do j=1,3
|
||||
a1p(i,j) = AngMomBra(i,j)
|
||||
b1m(i,j) = AngMomKet(i,j)
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomKet(1,1) > 0) then
|
||||
@ -64,7 +64,7 @@ recursive function HRR2e(AngMomBra,AngMomKet, &
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in HRR2e!'
|
||||
endif
|
||||
end if
|
||||
! End loop over cartesian directions
|
||||
a1p(1,xyz) = a1p(1,xyz) + 1
|
||||
b1m(1,xyz) = b1m(1,xyz) - 1
|
||||
@ -78,8 +78,8 @@ recursive function HRR2e(AngMomBra,AngMomKet, &
|
||||
do j=1,3
|
||||
a2p(i,j) = AngMomBra(i,j)
|
||||
b2m(i,j) = AngMomKet(i,j)
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomKet(2,1) > 0) then
|
||||
@ -90,12 +90,12 @@ recursive function HRR2e(AngMomBra,AngMomKet, &
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in HRR2e!'
|
||||
endif
|
||||
end if
|
||||
! End loop over cartesian directions
|
||||
a2p(2,xyz) = a2p(2,xyz) + 1
|
||||
b2m(2,xyz) = b2m(2,xyz) - 1
|
||||
a1a2b1b2 = HRR2e(a2p,b2m,maxm,Om,ExpZi,ExpY,CenterAB,CenterZA,CenterY) &
|
||||
+ CenterAB(2,xyz)*HRR2e(AngMomBra,b2m,maxm,Om,ExpZi,ExpY,CenterAB,CenterZA,CenterY)
|
||||
endif
|
||||
end if
|
||||
|
||||
end function HRR2e
|
||||
|
@ -30,7 +30,7 @@ recursive function HRR3e(AngMomBra,AngMomKet,maxm,Om,ExpZ,CenterAB,CenterZA,DY0,
|
||||
NegAngMomKet(i) = AngMomKet(i,1) < 0 .or. AngMomKet(i,2) < 0 .or. AngMomKet(i,3) < 0
|
||||
TotAngMomBra(i) = AngMomBra(i,1) + AngMomBra(i,2) + AngMomBra(i,3)
|
||||
TotAngMomKet(i) = AngMomKet(i,1) + AngMomKet(i,2) + AngMomKet(i,3)
|
||||
enddo
|
||||
end do
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Termination condition
|
||||
@ -50,8 +50,8 @@ recursive function HRR3e(AngMomBra,AngMomKet,maxm,Om,ExpZ,CenterAB,CenterZA,DY0,
|
||||
do j=1,3
|
||||
a1p(i,j) = AngMomBra(i,j)
|
||||
b1m(i,j) = AngMomKet(i,j)
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomKet(1,1) > 0) then
|
||||
@ -62,7 +62,7 @@ recursive function HRR3e(AngMomBra,AngMomKet,maxm,Om,ExpZ,CenterAB,CenterZA,DY0,
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in HRR3e!'
|
||||
endif
|
||||
end if
|
||||
! End loop over cartesian directions
|
||||
a1p(1,xyz) = a1p(1,xyz) + 1
|
||||
b1m(1,xyz) = b1m(1,xyz) - 1
|
||||
@ -77,8 +77,8 @@ recursive function HRR3e(AngMomBra,AngMomKet,maxm,Om,ExpZ,CenterAB,CenterZA,DY0,
|
||||
do j=1,3
|
||||
a2p(i,j) = AngMomBra(i,j)
|
||||
b2m(i,j) = AngMomKet(i,j)
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomKet(2,1) > 0) then
|
||||
@ -89,7 +89,7 @@ recursive function HRR3e(AngMomBra,AngMomKet,maxm,Om,ExpZ,CenterAB,CenterZA,DY0,
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in HRR3e!'
|
||||
endif
|
||||
end if
|
||||
! End loop over cartesian directions
|
||||
a2p(2,xyz) = a2p(2,xyz) + 1
|
||||
b2m(2,xyz) = b2m(2,xyz) - 1
|
||||
@ -104,8 +104,8 @@ recursive function HRR3e(AngMomBra,AngMomKet,maxm,Om,ExpZ,CenterAB,CenterZA,DY0,
|
||||
do j=1,3
|
||||
a3p(i,j) = AngMomBra(i,j)
|
||||
b3m(i,j) = AngMomKet(i,j)
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomKet(3,1) > 0) then
|
||||
@ -116,13 +116,13 @@ recursive function HRR3e(AngMomBra,AngMomKet,maxm,Om,ExpZ,CenterAB,CenterZA,DY0,
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in HRR3e!'
|
||||
endif
|
||||
end if
|
||||
! End loop over cartesian directions
|
||||
a3p(3,xyz) = a3p(3,xyz) + 1
|
||||
b3m(3,xyz) = b3m(3,xyz) - 1
|
||||
a1a2a3b1b2b3 = HRR3e(a3p,b3m,maxm,Om,ExpZ,CenterAB,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
+ CenterAB(3,xyz)* &
|
||||
HRR3e(AngMomBra,b3m,maxm,Om,ExpZ,CenterAB,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
endif
|
||||
end if
|
||||
|
||||
end function HRR3e
|
||||
|
@ -48,7 +48,7 @@ recursive function HRRNuc(AngMomA,AngMomB,maxm,Om,ExpPi,CenterAB,CenterPA,Center
|
||||
do i=1,3
|
||||
ap(i) = AngMomA(i)
|
||||
bm(i) = AngMomB(i)
|
||||
enddo
|
||||
end do
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomB(1) > 0) then
|
||||
@ -59,13 +59,13 @@ recursive function HRRNuc(AngMomA,AngMomB,maxm,Om,ExpPi,CenterAB,CenterPA,Center
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in HRRNuc!'
|
||||
endif
|
||||
end if
|
||||
! End loop over cartesian directions
|
||||
ap(xyz) = ap(xyz) + 1
|
||||
bm(xyz) = bm(xyz) - 1
|
||||
Gab = HRRNuc(ap,bm,maxm,Om,ExpPi,CenterAB,CenterPA,CenterPC) &
|
||||
+ CenterAB(xyz)*HRRNuc(AngMomA,bm,maxm,Om,ExpPi,CenterAB,CenterPA,CenterPC)
|
||||
endif
|
||||
endif
|
||||
end if
|
||||
end if
|
||||
|
||||
end function HRRNuc
|
||||
|
@ -22,7 +22,7 @@ recursive function HRROv(AngMomA,AngMomB,ExpPi,CenterAB,CenterPA) &
|
||||
else
|
||||
Gab = HRROv(AngMomA+1,AngMomB-1,ExpPi,CenterAB,CenterPA) &
|
||||
+ CenterAB*HRROv(AngMomA,AngMomB-1,ExpPi,CenterAB,CenterPA)
|
||||
endif
|
||||
endif
|
||||
end if
|
||||
end if
|
||||
|
||||
end function HRROv
|
||||
|
@ -109,7 +109,7 @@ program IntPak
|
||||
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time = ',t_1eInt(iType),' seconds'
|
||||
write(*,*)
|
||||
|
||||
endif
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute one-electron kinetic integrals
|
||||
@ -137,7 +137,7 @@ program IntPak
|
||||
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time = ',t_1eInt(iType),' seconds'
|
||||
write(*,*)
|
||||
|
||||
endif
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute one-electron nuclear attraction integrals
|
||||
@ -166,7 +166,7 @@ program IntPak
|
||||
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time = ',t_1eInt(iType),' seconds'
|
||||
write(*,*)
|
||||
|
||||
endif
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute ERIs
|
||||
@ -201,7 +201,7 @@ program IntPak
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute F12 two-electron integrals
|
||||
@ -263,7 +263,7 @@ program IntPak
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute Yukawa two-electron integrals
|
||||
@ -298,7 +298,7 @@ program IntPak
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute long-range Coulomb two-electron integrals
|
||||
@ -334,7 +334,7 @@ program IntPak
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute three-electron integrals: Type 1 => chain C12 S23
|
||||
@ -372,7 +372,7 @@ program IntPak
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute three-electron integrals: Type 2 => cyclic C12 S13 S23
|
||||
@ -407,7 +407,7 @@ program IntPak
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute three-electron integrals: Type 3 => chain S13 S23
|
||||
@ -442,7 +442,7 @@ program IntPak
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute four-electron integrals: Type 1 => chain C12 S14 S23
|
||||
@ -477,7 +477,7 @@ program IntPak
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute four-electron integrals: Type 2 => trident C12 S13 S14
|
||||
@ -511,7 +511,7 @@ program IntPak
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute four-electron integrals: Type 3 => chain C12 S13 S34
|
||||
@ -546,7 +546,7 @@ program IntPak
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
end if
|
||||
!------------------------------------------------------------------------
|
||||
! End of IntPak
|
||||
!------------------------------------------------------------------------
|
||||
|
@ -71,6 +71,6 @@ subroutine KinInt(npKin,nSigpKin,ExpA,CenterA,AngMomA,ExpB,CenterB,AngMomB,pKin)
|
||||
npKin = npKin + 1
|
||||
if(abs(pKin) > 1d-15) then
|
||||
nSigpKin = nSigpKin + 1
|
||||
endif
|
||||
end if
|
||||
|
||||
end subroutine KinInt
|
||||
|
@ -57,7 +57,7 @@ subroutine NucInt(debug,npNuc,nSigpNuc, &
|
||||
CenterPC(i) = CenterP(i) - CenterC(i)
|
||||
NormABSq = NormABSq + CenterAB(i)**2
|
||||
NormPCSq = NormPCSq + CenterPC(i)**2
|
||||
enddo
|
||||
end do
|
||||
|
||||
G = (pi*ExpPi)**(1.5d0)*exp(-NormABSq/(ExpAi+ExpBi))
|
||||
|
||||
@ -81,9 +81,9 @@ subroutine NucInt(debug,npNuc,nSigpNuc, &
|
||||
write(*,*) '(0|V|0)^m'
|
||||
do i=0,maxm
|
||||
write(*,*) i,Om(i)
|
||||
enddo
|
||||
end do
|
||||
write(*,*)
|
||||
endif
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Launch reccurence relations!
|
||||
@ -105,7 +105,7 @@ subroutine NucInt(debug,npNuc,nSigpNuc, &
|
||||
if(abs(pNuc) > 1d-15) then
|
||||
nSigpNuc = nSigpNuc + 1
|
||||
! write(*,'(A10,1X,F16.10,1X,I6,1X,I6)') '[a|V|b] = ',pNuc
|
||||
endif
|
||||
end if
|
||||
|
||||
! Deallocate arrays
|
||||
|
||||
|
@ -69,6 +69,6 @@ subroutine OvInt(npOv,nSigpOv,ExpA,CenterA,AngMomA,ExpB,CenterB,AngMomB,pOv)
|
||||
npOv = npOv + 1
|
||||
if(abs(pOv) > 1d-15) then
|
||||
nSigpOv = nSigpOv + 1
|
||||
endif
|
||||
end if
|
||||
|
||||
end subroutine OvInt
|
||||
|
@ -46,7 +46,7 @@ subroutine S2eInt(debug,iType,np2eInt,nSigp2eInt, &
|
||||
ExpKet(1),CenterKet(1,1:3),AngMomKet(1,1:3), &
|
||||
ExpBra(2),CenterBra(2,1:3),AngMomBra(2,1:3), &
|
||||
ExpKet(2),CenterKet(2,1:3),AngMomKet(2,1:3))
|
||||
enddo
|
||||
end do
|
||||
else
|
||||
do k=1,KG
|
||||
ExpSG = ExpG(k)*ExpS**2
|
||||
@ -55,8 +55,8 @@ subroutine S2eInt(debug,iType,np2eInt,nSigp2eInt, &
|
||||
ExpSG, &
|
||||
ExpBra,CenterBra,AngMomBra, &
|
||||
ExpKet,CenterKet,AngMomKet)
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
end if
|
||||
|
||||
! Print result
|
||||
|
||||
@ -65,6 +65,6 @@ subroutine S2eInt(debug,iType,np2eInt,nSigp2eInt, &
|
||||
if(abs(p2eInt) > 1d-15) then
|
||||
nSigp2eInt = nSigp2eInt + 1
|
||||
if(.false.) write(*,'(A15,1X,F16.10)') '[a1a2|b1b2] = ',p2eInt
|
||||
endif
|
||||
end if
|
||||
|
||||
end subroutine S2eInt
|
||||
|
@ -71,6 +71,6 @@ subroutine S3eInt(debug,iType,np3eInt,nSigp3eInt, &
|
||||
if(abs(p3eInt) > 1d-15) then
|
||||
nSigp3eInt = nSigp3eInt + 1
|
||||
if(.false.) write(*,'(A15,1X,F16.10)') '[a1a2a3|b1b2b3] = ',p3eInt
|
||||
endif
|
||||
end if
|
||||
|
||||
end subroutine S3eInt
|
||||
|
@ -31,7 +31,7 @@ recursive function VRR2e(m,AngMomBra,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
||||
do i=1,2
|
||||
NegAngMomBra(i) = AngMomBra(i,1) < 0 .or. AngMomBra(i,2) < 0 .or. AngMomBra(i,3) < 0
|
||||
TotAngMomBra(i) = AngMomBra(i,1) + AngMomBra(i,2) + AngMomBra(i,3)
|
||||
enddo
|
||||
end do
|
||||
|
||||
fZ(1) = ExpY(1,2)*ExpZi(1)
|
||||
fZ(2) = ExpY(1,2)*ExpZi(2)
|
||||
@ -55,8 +55,8 @@ recursive function VRR2e(m,AngMomBra,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
||||
do j=1,3
|
||||
a1m(i,j) = AngMomBra(i,j)
|
||||
a1mm(i,j) = AngMomBra(i,j)
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomBra(1,1) > 0) then
|
||||
@ -67,7 +67,7 @@ recursive function VRR2e(m,AngMomBra,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in VRR2e!'
|
||||
endif
|
||||
end if
|
||||
! End loop over cartesian directions
|
||||
a1m(1,xyz) = a1m(1,xyz) - 1
|
||||
a1mm(1,xyz) = a1mm(1,xyz) - 2
|
||||
@ -82,7 +82,7 @@ recursive function VRR2e(m,AngMomBra,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
||||
+ 0.5d0*dble(AngMomBra(1,xyz)-1)*ExpZi(1)*( &
|
||||
VRR2e(m,a1mm,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
||||
- fZ(1)*VRR2e(m+1,a1mm,maxm,Om,ExpZi,ExpY,CenterZA,CenterY))
|
||||
endif
|
||||
end if
|
||||
!------------------------------------------------------------------------
|
||||
! 2nd vertical recurrence relation (5 terms): (a0|c+0)^m
|
||||
!------------------------------------------------------------------------
|
||||
@ -92,8 +92,8 @@ recursive function VRR2e(m,AngMomBra,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
||||
a2m(i,j) = AngMomBra(i,j)
|
||||
a2mm(i,j) = AngMomBra(i,j)
|
||||
a1m2m(i,j) = AngMomBra(i,j)
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomBra(2,1) > 0) then
|
||||
@ -104,7 +104,7 @@ recursive function VRR2e(m,AngMomBra,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in VRR2e!'
|
||||
endif
|
||||
end if
|
||||
! End loop over cartesian directions
|
||||
a2m(2,xyz) = a2m(2,xyz) - 1
|
||||
a2mm(2,xyz) = a2mm(2,xyz) - 2
|
||||
@ -121,10 +121,10 @@ recursive function VRR2e(m,AngMomBra,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
||||
+ 0.5d0*dble(AngMomBra(2,xyz)-1)*ExpZi(2)*( &
|
||||
VRR2e(m,a2mm,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
||||
- fZ(2)*VRR2e(m+1,a2mm,maxm,Om,ExpZi,ExpY,CenterZA,CenterY))
|
||||
endif
|
||||
end if
|
||||
if(AngMomBra(1,xyz) > 0) &
|
||||
a1a2 = a1a2 &
|
||||
+ 0.5d0*dble(AngMomBra(1,xyz))*fZ(2)*ExpZi(1)*VRR2e(m+1,a1m2m,maxm,Om,ExpZi,ExpY,CenterZA,CenterY)
|
||||
endif
|
||||
end if
|
||||
|
||||
end function VRR2e
|
||||
|
@ -31,7 +31,7 @@ recursive function VRR3e(m,AngMomBra,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
do i=1,3
|
||||
NegAngMomBra(i) = AngMomBra(i,1) < 0 .or. AngMomBra(i,2) < 0 .or. AngMomBra(i,3) < 0
|
||||
TotAngMomBra(i) = AngMomBra(i,1) + AngMomBra(i,2) + AngMomBra(i,3)
|
||||
enddo
|
||||
end do
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Termination condition
|
||||
@ -51,8 +51,8 @@ recursive function VRR3e(m,AngMomBra,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
do j=1,3
|
||||
a1m(i,j) = AngMomBra(i,j)
|
||||
a1mm(i,j) = AngMomBra(i,j)
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomBra(1,1) > 0) then
|
||||
@ -63,7 +63,7 @@ recursive function VRR3e(m,AngMomBra,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in VRR3e!'
|
||||
endif
|
||||
end if
|
||||
! End loop over cartesian directions
|
||||
a1m(1,xyz) = a1m(1,xyz) - 1
|
||||
a1mm(1,xyz) = a1mm(1,xyz) - 2
|
||||
@ -77,7 +77,7 @@ recursive function VRR3e(m,AngMomBra,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
- (DY1(1) - DY0(1))*VRR3e(m+1,a1m, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
+ dble(AngMomBra(1,xyz)-1)*(0.5d0/ExpZ(1) - D2Y0(1,1))*VRR3e(m, a1mm,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
- dble(AngMomBra(1,xyz)-1)*(D2Y1(1,1) - D2Y0(1,1))*VRR3e(m+1,a1mm,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
endif
|
||||
end if
|
||||
!------------------------------------------------------------------------
|
||||
! 2nd vertical recurrence relation (6 terms): (a1a2+0|000)^m
|
||||
!------------------------------------------------------------------------
|
||||
@ -87,8 +87,8 @@ recursive function VRR3e(m,AngMomBra,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
a2m(i,j) = AngMomBra(i,j)
|
||||
a2mm(i,j) = AngMomBra(i,j)
|
||||
a1m2m(i,j) = AngMomBra(i,j)
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomBra(2,1) > 0) then
|
||||
@ -99,7 +99,7 @@ recursive function VRR3e(m,AngMomBra,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in VRR3e!'
|
||||
endif
|
||||
end if
|
||||
! End loop over cartesian directions
|
||||
a2m(2,xyz) = a2m(2,xyz) - 1
|
||||
a2mm(2,xyz) = a2mm(2,xyz) - 2
|
||||
@ -115,7 +115,7 @@ recursive function VRR3e(m,AngMomBra,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
- (DY1(2) - DY0(2))*VRR3e(m+1,a2m, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
+ dble(AngMomBra(2,xyz)-1)*(0.5d0/ExpZ(2) - D2Y0(2,2))*VRR3e(m, a2mm, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
- dble(AngMomBra(2,xyz)-1)*(D2Y1(2,2) - D2Y0(2,2))*VRR3e(m+1,a2mm, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
endif
|
||||
end if
|
||||
if(AngMomBra(1,xyz) > 0) &
|
||||
a1a2a3 = a1a2a3 &
|
||||
+ dble(AngMomBra(1,xyz))*(-D2Y0(2,1))*VRR3e(m, a1m2m,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
@ -130,8 +130,8 @@ recursive function VRR3e(m,AngMomBra,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
a3mm(i,j) = AngMomBra(i,j)
|
||||
a1m3m(i,j) = AngMomBra(i,j)
|
||||
a2m3m(i,j) = AngMomBra(i,j)
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomBra(3,1) > 0) then
|
||||
@ -142,7 +142,7 @@ recursive function VRR3e(m,AngMomBra,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in VRR3e!'
|
||||
endif
|
||||
end if
|
||||
! End loop over cartesian directions
|
||||
a3m(3,xyz) = a3m(3,xyz) - 1
|
||||
a3mm(3,xyz) = a3mm(3,xyz) - 2
|
||||
@ -160,7 +160,7 @@ recursive function VRR3e(m,AngMomBra,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
- (DY1(3) - DY0(3))*VRR3e(m+1,a3m, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
+ dble(AngMomBra(3,xyz)-1)*(0.5d0/ExpZ(3) - D2Y0(3,3))*VRR3e(m, a3mm, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
- dble(AngMomBra(3,xyz)-1)*(D2Y1(3,3) - D2Y0(3,3))*VRR3e(m+1,a3mm, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
endif
|
||||
end if
|
||||
if(dble(AngMomBra(1,xyz)) > 0) &
|
||||
a1a2a3 = a1a2a3 &
|
||||
+ dble(AngMomBra(1,xyz))*(-D2Y0(3,1))*VRR3e(m, a1m3m,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
@ -169,6 +169,6 @@ recursive function VRR3e(m,AngMomBra,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
a1a2a3 = a1a2a3 &
|
||||
+ dble(AngMomBra(2,xyz))*(-D2Y0(3,2))*VRR3e(m, a2m3m,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
- dble(AngMomBra(2,xyz))*(D2Y1(3,2) - D2Y0(3,2))*VRR3e(m+1,a2m3m,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
endif
|
||||
end if
|
||||
|
||||
end function VRR3e
|
||||
|
@ -51,7 +51,7 @@ recursive function VRRNuc(m,AngMomA,maxm,Om,ExpPi,CenterAB,CenterPA,CenterPC) &
|
||||
do i=1,3
|
||||
am(i) = AngMomA(i)
|
||||
amm(i) = AngMomA(i)
|
||||
enddo
|
||||
end do
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomA(1) > 0) then
|
||||
@ -62,7 +62,7 @@ recursive function VRRNuc(m,AngMomA,maxm,Om,ExpPi,CenterAB,CenterPA,CenterPC) &
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in VRRNuc!'
|
||||
endif
|
||||
end if
|
||||
! End loop over cartesian directions
|
||||
am(xyz) = am(xyz) - 1
|
||||
amm(xyz) = amm(xyz) - 2
|
||||
@ -70,7 +70,7 @@ recursive function VRRNuc(m,AngMomA,maxm,Om,ExpPi,CenterAB,CenterPA,CenterPC) &
|
||||
+ 0.5d0*dble(am(xyz))*ExpPi*VRRNuc(m,amm,maxm,Om,ExpPi,CenterAB,CenterPA,CenterPC) &
|
||||
- CenterPC(xyz)*ExpPi*VRRNuc(m+1,am,maxm,Om,ExpPi,CenterAB,CenterPA,CenterPC) &
|
||||
- 0.5d0*dble(am(xyz))*ExpPi**2*VRRNuc(m+1,amm,maxm,Om,ExpPi,CenterAB,CenterPA,CenterPC)
|
||||
endif
|
||||
endif
|
||||
end if
|
||||
end if
|
||||
|
||||
end function VRRNuc
|
||||
|
@ -22,7 +22,7 @@ recursive function VRROv(AngMomA,ExpPi,CenterPA) &
|
||||
Ga = 1d0
|
||||
else
|
||||
Ga = CenterPA*VRROv(AngMomA-1,ExpPi,CenterPA) + 0.5d0*dble(AngMomA-1)*ExpPi*VRROv(AngMomA-2,ExpPi,CenterPA)
|
||||
endif
|
||||
endif
|
||||
end if
|
||||
end if
|
||||
|
||||
end function VRROv
|
||||
|
1
src/IntPak/obj/.gitignore
vendored
Normal file
1
src/IntPak/obj/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
*.o
|
@ -18,7 +18,7 @@ subroutine AO_values(doDrift,nBas,nShell,nWalk,CenterShell,TotAngMomShell,KShell
|
||||
|
||||
integer :: atot,nShellFunction,a(3)
|
||||
integer,allocatable :: ShellFunction(:,:)
|
||||
double precision :: rASq,xA,yA,zA,NormCoeff,prim
|
||||
double precision :: rASq,xA,yA,zA,norm_coeff,prim
|
||||
|
||||
integer :: iSh,iShF,iK,iW,iEl,iBas,ixyz
|
||||
|
||||
@ -66,7 +66,7 @@ subroutine AO_values(doDrift,nBas,nShell,nWalk,CenterShell,TotAngMomShell,KShell
|
||||
do iK=1,KShell(iSh)
|
||||
|
||||
! Calculate the exponential part
|
||||
prim = DShell(iSh,iK)*NormCoeff(ExpShell(iSh,iK),a)*exp(-ExpShell(iSh,iK)*rASq)
|
||||
prim = DShell(iSh,iK)*norm_coeff(ExpShell(iSh,iK),a)*exp(-ExpShell(iSh,iK)*rASq)
|
||||
AO(iW,iEl,iBas) = AO(iW,iEl,iBas) + prim
|
||||
|
||||
if(doDrift) then
|
||||
|
@ -21,8 +21,8 @@ subroutine form_EOM_one_body(nO,nV,foo,fov,fvv,t1,t2,OOOV,OOVV,OVVV,cFoo,cFov,cF
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: i,j,k,l,m,n
|
||||
integer :: a,b,c,d,e,f
|
||||
integer :: i,j,k,l
|
||||
integer :: a,b,c,d
|
||||
double precision,allocatable :: tau(:,:,:,:)
|
||||
|
||||
! Output variables
|
||||
@ -54,20 +54,20 @@ subroutine form_EOM_one_body(nO,nV,foo,fov,fvv,t1,t2,OOOV,OOVV,OVVV,cFoo,cFov,cF
|
||||
do a=1,nV
|
||||
do b=1,nV
|
||||
|
||||
do m=1,nO
|
||||
cFvv(a,b) = cFvv(a,b) - fov(m,b)*t1(m,a)
|
||||
do i=1,nO
|
||||
cFvv(a,b) = cFvv(a,b) - fov(i,b)*t1(i,a)
|
||||
end do
|
||||
|
||||
do m=1,nO
|
||||
do f=1,nV
|
||||
cFvv(a,b) = cFvv(a,b) + t1(m,f)*OVVV(m,a,f,b)
|
||||
do i=1,nO
|
||||
do c=1,nV
|
||||
cFvv(a,b) = cFvv(a,b) + t1(i,c)*OVVV(i,a,c,b)
|
||||
end do
|
||||
end do
|
||||
|
||||
do m=1,nO
|
||||
do n=1,nO
|
||||
do e=1,nV
|
||||
cFvv(a,b) = cFvv(a,b) - 0.5d0*tau(m,n,a,e)*OOVV(m,n,b,e)
|
||||
do i=1,nO
|
||||
do j=1,nO
|
||||
do c=1,nV
|
||||
cFvv(a,b) = cFvv(a,b) - 0.5d0*tau(i,j,a,c)*OOVV(i,j,b,c)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
@ -79,23 +79,23 @@ subroutine form_EOM_one_body(nO,nV,foo,fov,fvv,t1,t2,OOOV,OOVV,OVVV,cFoo,cFov,cF
|
||||
|
||||
cFoo(:,:) = foo(:,:)
|
||||
|
||||
do j=1,nO
|
||||
do i=1,nO
|
||||
do j=1,nO
|
||||
|
||||
do e=1,nV
|
||||
cFoo(j,i) = cFoo(j,i) + t1(i,e)*fov(j,e)
|
||||
do a=1,nV
|
||||
cFoo(i,j) = cFoo(i,j) + t1(j,a)*fov(i,a)
|
||||
end do
|
||||
|
||||
do m=1,nO
|
||||
do e=1,nV
|
||||
cFoo(j,i) = cFoo(j,i) + t1(m,e)*OVVV(j,m,i,e)
|
||||
do k=1,nO
|
||||
do a=1,nV
|
||||
cFoo(i,j) = cFoo(i,j) + t1(k,a)*OVVV(i,k,j,a)
|
||||
end do
|
||||
end do
|
||||
|
||||
do m=1,nO
|
||||
do e=1,nV
|
||||
do f=1,nV
|
||||
cFoo(j,i) = cFoo(j,i) + 0.5d0*tau(i,m,e,f)*OOVV(j,m,e,f)
|
||||
do k=1,nO
|
||||
do a=1,nV
|
||||
do b=1,nV
|
||||
cFoo(i,j) = cFoo(i,j) + 0.5d0*tau(j,k,a,b)*OOVV(i,k,a,b)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
@ -72,19 +72,19 @@ subroutine form_EOM_two_body(nO,nV,foo,fov,fvv,t1,t2,cFoo,cFov,cFvv,
|
||||
|
||||
cWoooo(:,:,:,:) = OOOO(:,:,:,:)
|
||||
|
||||
do k=1,nO
|
||||
do l=1,nO
|
||||
do i=1,nO
|
||||
do j=1,nO
|
||||
do k=1,nO
|
||||
do l=1,nO
|
||||
|
||||
do e=1,nV
|
||||
cWoooo(k,l,i,j) = cWoooo(k,l,i,j) + t1(j,e)*OOOV(k,l,i,e)
|
||||
cWoooo(k,l,i,j) = cWoooo(k,l,i,j) - t1(i,e)*OOOV(k,l,j,e)
|
||||
cWoooo(i,j,k,l) = cWoooo(i,j,k,l) + t1(j,e)*OOOV(i,j,k,e)
|
||||
cWoooo(i,j,k,l) = cWoooo(i,j,k,l) - t1(i,e)*OOOV(i,j,l,e)
|
||||
end do
|
||||
|
||||
do e=1,nV
|
||||
do f=1,nV
|
||||
cWoooo(k,l,i,j) = cWoooo(k,l,i,j) + 0.5d0*tau(i,j,e,f)*OOVV(k,l,e,f)
|
||||
do a=1,nV
|
||||
do b=1,nV
|
||||
cWoooo(i,j,k,l) = cWoooo(i,j,k,l) + 0.5d0*tau(k,l,a,b)*OOVV(i,j,a,b)
|
||||
end do
|
||||
end do
|
||||
|
||||
@ -102,14 +102,14 @@ subroutine form_EOM_two_body(nO,nV,foo,fov,fvv,t1,t2,cFoo,cFov,cFvv,
|
||||
do c=1,nV
|
||||
do d=1,nV
|
||||
|
||||
do m=1,nV
|
||||
cWvvvv(a,b,c,d) = cWvvvv(a,b,c,d) - t1(m,b)*VOVV(a,m,c,d)
|
||||
cWvvvv(a,b,c,d) = cWvvvv(a,b,c,d) + t1(m,a)*VOVV(b,m,c,d)
|
||||
do i=1,nO
|
||||
cWvvvv(a,b,c,d) = cWvvvv(a,b,c,d) - t1(i,b)*VOVV(a,i,c,d)
|
||||
cWvvvv(a,b,c,d) = cWvvvv(a,b,c,d) + t1(i,a)*VOVV(b,i,c,d)
|
||||
end do
|
||||
|
||||
do m=1,nV
|
||||
do n=1,nV
|
||||
cWvvvv(a,b,c,d) = cWvvvv(a,b,c,d) + tau(m,n,a,b)*OOVV(m,n,c,d)
|
||||
do i=1,nO
|
||||
do j=1,nO
|
||||
cWvvvv(a,b,c,d) = cWvvvv(a,b,c,d) + tau(i,j,a,b)*OOVV(i,j,c,d)
|
||||
end do
|
||||
end do
|
||||
|
||||
@ -127,8 +127,8 @@ subroutine form_EOM_two_body(nO,nV,foo,fov,fvv,t1,t2,cFoo,cFov,cFvv,
|
||||
do b=1,nV
|
||||
do c=1,nV
|
||||
|
||||
do m=1,nV
|
||||
cWvovv(a,i,b,c) = cWvovv(a,i,b,c) + t1(m,a)*OOVV(m,i,b,c)
|
||||
do j=1,nO
|
||||
cWvovv(a,i,b,c) = cWvovv(a,i,b,c) + t1(j,a)*OOVV(j,i,b,c)
|
||||
end do
|
||||
|
||||
end do
|
||||
@ -145,8 +145,8 @@ subroutine form_EOM_two_body(nO,nV,foo,fov,fvv,t1,t2,cFoo,cFov,cFvv,
|
||||
do k=1,nO
|
||||
do a=1,nO
|
||||
|
||||
do e=1,nV
|
||||
cWooov(i,j,k,a) = cWooov(i,j,k,a) + t1(i,e)*OOVV(j,k,e,a)
|
||||
do b=1,nV
|
||||
cWooov(i,j,k,a) = cWooov(i,j,k,a) + t1(i,b)*OOVV(j,k,b,a)
|
||||
end do
|
||||
|
||||
end do
|
||||
@ -195,36 +195,38 @@ subroutine form_EOM_two_body(nO,nV,foo,fov,fvv,t1,t2,cFoo,cFov,cFvv,
|
||||
do c=1,nV
|
||||
do i=1,nO
|
||||
|
||||
do m=1,nO
|
||||
do e=1,nV
|
||||
cWvvvo(a,b,c,i) = cWvvvo(a,b,c,i) + t2(i,m,b,e)*VOVV(a,m,c,e)
|
||||
cWvvvo(a,b,c,i) = cWvvvo(a,b,c,i) - t2(i,m,a,e)*VOVV(b,m,c,e)
|
||||
do j=1,nO
|
||||
do d=1,nV
|
||||
cWvvvo(a,b,c,i) = cWvvvo(a,b,c,i) + t2(i,j,b,d)*VOVV(a,j,c,d)
|
||||
cWvvvo(a,b,c,i) = cWvvvo(a,b,c,i) - t2(i,j,a,d)*VOVV(b,j,c,d)
|
||||
end do
|
||||
end do
|
||||
|
||||
do m=1,nO
|
||||
do j=1,nO
|
||||
do k=1,nO
|
||||
cWvvvo(a,b,c,i) = cWvvvo(a,b,c,i) + 0.5d0*tau(j,k,a,b)*VOOO(c,i,j,k)
|
||||
end do
|
||||
end do
|
||||
|
||||
do j=1,nO
|
||||
cWvvvo(a,b,c,i) = cWvvvo(a,b,c,i) + t2(i,j,a,b)*cFov(j,c)
|
||||
end do
|
||||
|
||||
do d=1,nV
|
||||
cWvvvo(a,b,c,i) = cWvvvo(a,b,c,i) + t1(i,d)*cWvvvv(a,b,c,d)
|
||||
end do
|
||||
|
||||
do j=1,nO
|
||||
cWvvvo(a,b,c,i) = cWvvvo(a,b,c,i) - t1(j,a)*OVVO(j,b,c,i)
|
||||
cWvvvo(a,b,c,i) = cWvvvo(a,b,c,i) + t1(j,b)*OVVO(j,a,c,i)
|
||||
|
||||
do n=1,nO
|
||||
cWvvvo(a,b,c,i) = cWvvvo(a,b,c,i) + 0.5d0*tau(m,n,a,b)*VOOO(c,i,m,n)
|
||||
do d=1,nV
|
||||
cWvvvo(a,b,c,i) = cWvvvo(a,b,c,i) + t1(j,a)*t2(k,i,b,d)*OOVV(j,k,c,d)
|
||||
cWvvvo(a,b,c,i) = cWvvvo(a,b,c,i) - t1(j,b)*t2(k,i,a,d)*OOVV(j,k,c,d)
|
||||
end do
|
||||
end do
|
||||
|
||||
do m=1,nO
|
||||
cWvvvo(a,b,c,i) = cWvvvo(a,b,c,i) + t2(i,m,a,b)*cFov(m,c)
|
||||
end do
|
||||
|
||||
do e=1,nV
|
||||
cWvvvo(a,b,c,i) = cWvvvo(a,b,c,i) + t1(i,e)*cWvvvv(a,b,c,e)
|
||||
end do
|
||||
|
||||
do m=1,nO
|
||||
cWvvvo(a,b,c,i) = cWvvvo(a,b,c,i) - t1(m,a)*OVVO(m,b,c,i)
|
||||
cWvvvo(a,b,c,i) = cWvvvo(a,b,c,i) + t1(m,b)*OVVO(m,a,c,i)
|
||||
do n=1,nO
|
||||
do e=1,nV
|
||||
cWvvvo(a,b,c,i) = cWvvvo(a,b,c,i) + t1(m,a)*t2(n,i,b,e)*OOVV(m,n,c,e)
|
||||
cWvvvo(a,b,c,i) = cWvvvo(a,b,c,i) - t1(m,b)*t2(n,i,a,e)*OOVV(m,n,c,e)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
end do
|
||||
@ -241,36 +243,38 @@ subroutine form_EOM_two_body(nO,nV,foo,fov,fvv,t1,t2,cFoo,cFov,cFvv,
|
||||
do j=1,nO
|
||||
do k=1,nO
|
||||
|
||||
do m=1,nO
|
||||
do e=1,nV
|
||||
cWovoo(i,a,j,k) = cWovoo(i,a,j,k) + t2(k,m,a,e)*OOOV(i,m,j,e)
|
||||
cWovoo(i,a,j,k) = cWovoo(i,a,j,k) - t2(k,m,a,e)*OOOV(j,m,i,e)
|
||||
do l=1,nO
|
||||
do b=1,nV
|
||||
cWovoo(i,a,j,k) = cWovoo(i,a,j,k) + t2(k,l,a,b)*OOOV(i,l,j,b)
|
||||
cWovoo(i,a,j,k) = cWovoo(i,a,j,k) - t2(k,l,a,b)*OOOV(j,l,i,b)
|
||||
end do
|
||||
end do
|
||||
|
||||
do e=1,nV
|
||||
do f=1,nV
|
||||
cWovoo(i,a,j,k) = cWovoo(i,a,j,k) + 0.5d0*tau(j,k,e,f)*OVVV(i,a,e,f)
|
||||
do b=1,nV
|
||||
do c=1,nV
|
||||
cWovoo(i,a,j,k) = cWovoo(i,a,j,k) + 0.5d0*tau(j,k,b,c)*OVVV(i,a,b,c)
|
||||
end do
|
||||
end do
|
||||
|
||||
do e=1,nV
|
||||
cWovoo(i,a,j,k) = cWovoo(i,a,j,k) + t2(j,k,a,e)*cFov(i,e)
|
||||
do b=1,nV
|
||||
cWovoo(i,a,j,k) = cWovoo(i,a,j,k) + t2(j,k,a,b)*cFov(i,b)
|
||||
end do
|
||||
|
||||
do m=1,nO
|
||||
cWovoo(i,a,j,k) = cWovoo(i,a,j,k) + t1(m,a)*cWoooo(i,m,j,k)
|
||||
do l=1,nO
|
||||
cWovoo(i,a,j,k) = cWovoo(i,a,j,k) + t1(l,a)*cWoooo(i,l,j,k)
|
||||
end do
|
||||
|
||||
do e=1,nV
|
||||
cWovoo(i,a,j,k) = cWovoo(i,a,j,k) - t1(j,e)*OVVO(i,a,e,k)
|
||||
cWovoo(i,a,j,k) = cWovoo(i,a,j,k) + t1(i,e)*OVVO(j,a,e,k)
|
||||
do m=1,nO
|
||||
do f=1,nV
|
||||
cWovoo(i,a,j,k) = cWovoo(i,a,j,k) + t1(j,e)*t2(m,k,a,f)*OOVV(i,m,e,f)
|
||||
cWovoo(i,a,j,k) = cWovoo(i,a,j,k) - t1(i,e)*t2(m,k,a,f)*OOVV(j,m,e,f)
|
||||
do b=1,nV
|
||||
cWovoo(i,a,j,k) = cWovoo(i,a,j,k) - t1(j,b)*OVVO(i,a,b,k)
|
||||
cWovoo(i,a,j,k) = cWovoo(i,a,j,k) + t1(i,b)*OVVO(j,a,b,k)
|
||||
|
||||
do l=1,nO
|
||||
do c=1,nV
|
||||
cWovoo(i,a,j,k) = cWovoo(i,a,j,k) + t1(j,b)*t2(l,k,a,c)*OOVV(i,l,b,c)
|
||||
cWovoo(i,a,j,k) = cWovoo(i,a,j,k) - t1(i,b)*t2(l,k,a,c)*OOVV(j,l,b,c)
|
||||
end do
|
||||
end do
|
||||
|
||||
end do
|
||||
|
||||
end do
|
||||
|
1
src/QuAcK/obj/.gitingore
Normal file
1
src/QuAcK/obj/.gitingore
Normal file
@ -0,0 +1 @@
|
||||
*.o
|
@ -21,7 +21,7 @@ subroutine AO_values_grid(nBas,nShell,CenterShell,TotAngMomShell,KShell,DShell,E
|
||||
|
||||
integer :: atot,nShellFunction,a(3)
|
||||
integer,allocatable :: ShellFunction(:,:)
|
||||
double precision :: rASq,xA,yA,zA,NormCoeff,prim
|
||||
double precision :: rASq,xA,yA,zA,norm_coeff,prim
|
||||
|
||||
integer :: iSh,iShF,iK,iG,iBas
|
||||
|
||||
@ -68,7 +68,7 @@ subroutine AO_values_grid(nBas,nShell,CenterShell,TotAngMomShell,KShell,DShell,E
|
||||
|
||||
! Calculate the exponential part
|
||||
|
||||
prim = DShell(iSh,iK)*NormCoeff(ExpShell(iSh,iK),a)*exp(-ExpShell(iSh,iK)*rASq)
|
||||
prim = DShell(iSh,iK)*norm_coeff(ExpShell(iSh,iK),a)*exp(-ExpShell(iSh,iK)*rASq)
|
||||
AO(iBas,iG) = AO(iBas,iG) + prim
|
||||
|
||||
prim = -2d0*ExpShell(iSh,iK)*prim
|
||||
|
1
src/eDFT/obj/.gitingore
Normal file
1
src/eDFT/obj/.gitingore
Normal file
@ -0,0 +1 @@
|
||||
*.o
|
170
src/utils/elements.f90
Normal file
170
src/utils/elements.f90
Normal file
@ -0,0 +1,170 @@
|
||||
function element_number(element_name)
|
||||
|
||||
implicit none
|
||||
|
||||
integer,parameter :: nelement_max = 103
|
||||
character(len=2),intent(in) :: element_name
|
||||
integer :: element_number
|
||||
character(len=2),parameter :: element_list(nelement_max) = &
|
||||
(/' H', 'He', & ! 2
|
||||
'Li','Be', ' B',' C',' N',' O',' F','Ne', & ! 10
|
||||
'Na','Mg', 'Al','Si',' P',' S','Cl','Ar', & ! 18
|
||||
' K','Ca','Sc','Ti',' V','Cr','Mn','Fe','Co','Ni','Cu','Zn','Ga','Ge','As','Se','Br','Kr', & ! 36
|
||||
'Rb','Sr',' Y','Zr','Nb','Mo','Tc','Ru','Rh','Pd','Ag','Cd','In','Sn','Sb','Te',' I','Xe', & ! 54
|
||||
'Cs','Ba', & ! 56
|
||||
'La','Ce','Pr','Nd','Pm','Sm','Eu','Gd','Tb','Dy','Ho','Er','Tm','Yb', & ! 70
|
||||
'Lu','Hf','Ta',' W','Re','Os','Ir','Pt','Au','Hg','Tl','Pb','Bi','Po','At','Rn', & ! 86
|
||||
'Fr','Ra', & ! 88
|
||||
'Ac','Th','Pa',' U','Np','Pu','Am','Cm','Bk','Cf','Es','Fm','Md','No', & ! 102
|
||||
'Lr' & ! 103
|
||||
/)
|
||||
|
||||
!=====
|
||||
integer :: ielement
|
||||
!=====
|
||||
|
||||
ielement=1
|
||||
do while( ADJUSTL(element_name) /= ADJUSTL(element_list(ielement)) )
|
||||
if( ielement == nelement_max ) then
|
||||
write(*,'(a,a)') ' Input symbol ',element_name
|
||||
write(*,'(a,i3,a)') ' Element symbol is not one of first ',nelement_max,' elements'
|
||||
write(*,*) '!!! element symbol not understood !!!'
|
||||
stop
|
||||
endif
|
||||
ielement = ielement + 1
|
||||
enddo
|
||||
|
||||
element_number = ielement
|
||||
|
||||
end function element_number
|
||||
|
||||
function element_core(zval,zatom)
|
||||
implicit none
|
||||
double precision,intent(in) :: zval
|
||||
double precision,intent(in) :: zatom
|
||||
integer :: element_core
|
||||
!=====
|
||||
|
||||
!
|
||||
! If zval /= zatom, this is certainly an effective core potential
|
||||
! and no core states should be frozen.
|
||||
if( ABS(zval - zatom) > 1d0-3 ) then
|
||||
element_core = 0
|
||||
else
|
||||
|
||||
if( zval <= 4.00001d0 ) then ! up to Be
|
||||
element_core = 0
|
||||
else if( zval <= 12.00001d0 ) then ! up to Mg
|
||||
element_core = 1
|
||||
else if( zval <= 30.00001d0 ) then ! up to Ca
|
||||
element_core = 5
|
||||
else if( zval <= 48.00001d0 ) then ! up to Sr
|
||||
element_core = 9
|
||||
else
|
||||
write(*,*) '!!! not imlemented in element_core !!!'
|
||||
stop
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
|
||||
end function element_core
|
||||
|
||||
function element_covalent_radius(zatom)
|
||||
|
||||
! Return covalent radius of an atom
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
integer,intent(in) :: zatom
|
||||
double precision :: element_covalent_radius
|
||||
|
||||
!
|
||||
! Data from Cambridge Structural Database
|
||||
! http://en.wikipedia.org/wiki/Covalent_radius
|
||||
!
|
||||
! Values are first given in picometer
|
||||
! They will be converted in bohr later on
|
||||
select case(zatom)
|
||||
case( 1)
|
||||
element_covalent_radius = 31.
|
||||
case( 2)
|
||||
element_covalent_radius = 28.
|
||||
case( 3)
|
||||
element_covalent_radius = 128.
|
||||
case( 4)
|
||||
element_covalent_radius = 96.
|
||||
case( 5)
|
||||
element_covalent_radius = 84.
|
||||
case( 6)
|
||||
element_covalent_radius = 73.
|
||||
case( 7)
|
||||
element_covalent_radius = 71.
|
||||
case( 8)
|
||||
element_covalent_radius = 66.
|
||||
case( 9)
|
||||
element_covalent_radius = 57.
|
||||
case(10) ! Ne.
|
||||
element_covalent_radius = 58.
|
||||
case(11)
|
||||
element_covalent_radius = 166.
|
||||
case(12)
|
||||
element_covalent_radius = 141.
|
||||
case(13)
|
||||
element_covalent_radius = 121.
|
||||
case(14)
|
||||
element_covalent_radius = 111.
|
||||
case(15)
|
||||
element_covalent_radius = 107.
|
||||
case(16)
|
||||
element_covalent_radius = 105.
|
||||
case(17)
|
||||
element_covalent_radius = 102.
|
||||
case(18) ! Ar.
|
||||
element_covalent_radius = 106.
|
||||
case(19)
|
||||
element_covalent_radius = 203.
|
||||
case(20)
|
||||
element_covalent_radius = 176.
|
||||
case(21)
|
||||
element_covalent_radius = 170.
|
||||
case(22)
|
||||
element_covalent_radius = 160.
|
||||
case(23)
|
||||
element_covalent_radius = 153.
|
||||
case(24)
|
||||
element_covalent_radius = 139.
|
||||
case(25)
|
||||
element_covalent_radius = 145.
|
||||
case(26)
|
||||
element_covalent_radius = 145.
|
||||
case(27)
|
||||
element_covalent_radius = 140.
|
||||
case(28)
|
||||
element_covalent_radius = 124.
|
||||
case(29)
|
||||
element_covalent_radius = 132.
|
||||
case(30)
|
||||
element_covalent_radius = 122.
|
||||
case(31)
|
||||
element_covalent_radius = 120.
|
||||
case(32)
|
||||
element_covalent_radius = 119.
|
||||
case(34)
|
||||
element_covalent_radius = 120.
|
||||
case(35)
|
||||
element_covalent_radius = 120.
|
||||
case(36) ! Kr.
|
||||
element_covalent_radius = 116.
|
||||
case default
|
||||
write(*,*) '!!! covalent radius not available !!!'
|
||||
stop
|
||||
end select
|
||||
|
||||
! pm to bohr conversion
|
||||
element_covalent_radius = element_covalent_radius*pmtoau
|
||||
|
||||
|
||||
end function element_covalent_radius
|
||||
|
29
src/utils/norm_coeff.f90
Normal file
29
src/utils/norm_coeff.f90
Normal file
@ -0,0 +1,29 @@
|
||||
function norm_coeff(alpha,a)
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
double precision,intent(in) :: alpha
|
||||
integer,intent(in) :: a(3)
|
||||
|
||||
! local variable
|
||||
double precision :: pi,dfa(3),dfac
|
||||
integer :: atot
|
||||
|
||||
! Output variable
|
||||
double precision norm_coeff
|
||||
|
||||
pi = 4d0*atan(1d0)
|
||||
atot = a(1) + a(2) + a(3)
|
||||
|
||||
dfa(1) = dfac(2*a(1))/(2d0**a(1)*dfac(a(1)))
|
||||
dfa(2) = dfac(2*a(2))/(2d0**a(2)*dfac(a(2)))
|
||||
dfa(3) = dfac(2*a(3))/(2d0**a(3)*dfac(a(3)))
|
||||
|
||||
|
||||
norm_coeff = (2d0*alpha/pi)**(3d0/2d0)*(4d0*alpha)**atot
|
||||
norm_coeff = norm_coeff/(dfa(1)*dfa(2)*dfa(3))
|
||||
norm_coeff = sqrt(norm_coeff)
|
||||
|
||||
end function norm_coeff
|
1
src/utils/obj/.gitignore
vendored
Normal file
1
src/utils/obj/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
*.o
|
176
src/utils/read_auxiliary_basis.f90
Normal file
176
src/utils/read_auxiliary_basis.f90
Normal file
@ -0,0 +1,176 @@
|
||||
subroutine read_auxiliary_basis(NAtoms,XYZAtoms,nShell,CenterShell, &
|
||||
TotAngMomShell,KShell,DShell,ExpShell)
|
||||
|
||||
! Read auxiliary basis set information
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: NAtoms
|
||||
double precision,intent(in) :: XYZAtoms(NAtoms,3)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: nShAt,iAt
|
||||
integer :: i,j,k
|
||||
character :: shelltype
|
||||
|
||||
! Output variables
|
||||
|
||||
integer,intent(out) :: nShell
|
||||
double precision,intent(out) :: CenterShell(maxShell,3)
|
||||
integer,intent(out) :: TotAngMomShell(maxShell),KShell(maxShell)
|
||||
double precision,intent(out) :: DShell(maxShell,maxK),ExpShell(maxShell,maxK)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Primary basis set information
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
! Open file with basis set specification
|
||||
|
||||
open(unit=2,file='input/basis')
|
||||
|
||||
! Read basis information
|
||||
|
||||
write(*,'(A28)') 'Gaussian basis set'
|
||||
write(*,'(A28)') '------------------'
|
||||
|
||||
nShell = 0
|
||||
do i=1,NAtoms
|
||||
read(2,*) iAt,nShAt
|
||||
write(*,'(A28,1X,I16)') 'Atom n. ',iAt
|
||||
write(*,'(A28,1X,I16)') 'number of shells ',nShAt
|
||||
write(*,'(A28)') '------------------'
|
||||
|
||||
! Basis function centers
|
||||
|
||||
do j=1,nShAt
|
||||
nShell = nShell + 1
|
||||
do k=1,3
|
||||
CenterShell(nShell,k) = XYZAtoms(iAt,k)
|
||||
enddo
|
||||
|
||||
! Shell type and contraction degree
|
||||
|
||||
read(2,*) shelltype,KShell(nShell)
|
||||
if(shelltype == "S") then
|
||||
TotAngMomShell(nShell) = 0
|
||||
write(*,'(A28,1X,I16)') 's-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "P") then
|
||||
TotAngMomShell(nShell) = 1
|
||||
write(*,'(A28,1X,I16)') 'p-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "D") then
|
||||
TotAngMomShell(nShell) = 2
|
||||
write(*,'(A28,1X,I16)') 'd-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "F") then
|
||||
TotAngMomShell(nShell) = 3
|
||||
write(*,'(A28,1X,I16)') 'f-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "G") then
|
||||
TotAngMomShell(nShell) = 4
|
||||
write(*,'(A28,1X,I16)') 'g-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "H") then
|
||||
TotAngMomShell(nShell) = 5
|
||||
write(*,'(A28,1X,I16)') 'h-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "I") then
|
||||
TotAngMomShell(nShell) = 6
|
||||
write(*,'(A28,1X,I16)') 'i-type shell with K = ',KShell(nShell)
|
||||
endif
|
||||
|
||||
! Read exponents and contraction coefficients
|
||||
|
||||
write(*,'(A28,1X,A16,A16)') '','Exponents','Contraction'
|
||||
do k=1,Kshell(nShell)
|
||||
read(2,*) ExpShell(nShell,k),DShell(nShell,k)
|
||||
write(*,'(A28,1X,F16.10,F16.10)') '',ExpShell(nShell,k),DShell(nShell,k)
|
||||
enddo
|
||||
enddo
|
||||
write(*,'(A28)') '------------------'
|
||||
enddo
|
||||
|
||||
! Total number of shells
|
||||
|
||||
write(*,'(A28,1X,I16)') 'Number of shells in OBS',nShell
|
||||
write(*,'(A28)') '------------------'
|
||||
write(*,*)
|
||||
|
||||
! Close file with basis set specification
|
||||
|
||||
close(unit=2)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Auxiliary basis set information
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
! Open file with auxilairy basis specification
|
||||
|
||||
open(unit=3,file='input/auxbasis')
|
||||
|
||||
! Read basis information
|
||||
|
||||
write(*,'(A28)') 'Auxiliary basis set'
|
||||
write(*,'(A28)') '-------------------'
|
||||
|
||||
do i=1,NAtoms
|
||||
read(3,*) iAt,nShAt
|
||||
write(*,'(A28,1X,I16)') 'Atom n. ',iAt
|
||||
write(*,'(A28,1X,I16)') 'number of shells ',nShAt
|
||||
write(*,'(A28)') '------------------'
|
||||
|
||||
! Basis function centers
|
||||
|
||||
do j=1,nShAt
|
||||
nShell = nShell + 1
|
||||
do k=1,3
|
||||
CenterShell(nShell,k) = XYZAtoms(iAt,k)
|
||||
enddo
|
||||
|
||||
! Shell type and contraction degree
|
||||
|
||||
read(3,*) shelltype,KShell(nShell)
|
||||
if(shelltype == "S") then
|
||||
TotAngMomShell(nShell) = 0
|
||||
write(*,'(A28,1X,I16)') 's-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "P") then
|
||||
TotAngMomShell(nShell) = 1
|
||||
write(*,'(A28,1X,I16)') 'p-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "D") then
|
||||
TotAngMomShell(nShell) = 2
|
||||
write(*,'(A28,1X,I16)') 'd-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "F") then
|
||||
TotAngMomShell(nShell) = 3
|
||||
write(*,'(A28,1X,I16)') 'f-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "G") then
|
||||
TotAngMomShell(nShell) = 4
|
||||
write(*,'(A28,1X,I16)') 'g-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "H") then
|
||||
TotAngMomShell(nShell) = 5
|
||||
write(*,'(A28,1X,I16)') 'h-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "I") then
|
||||
TotAngMomShell(nShell) = 6
|
||||
write(*,'(A28,1X,I16)') 'i-type shell with K = ',KShell(nShell)
|
||||
endif
|
||||
|
||||
! Read exponents and contraction coefficients
|
||||
|
||||
write(*,'(A28,1X,A16,A16)') '','Exponents','Contraction'
|
||||
do k=1,Kshell(nShell)
|
||||
read(3,*) ExpShell(nShell,k),DShell(nShell,k)
|
||||
write(*,'(A28,1X,F16.10,F16.10)') '',ExpShell(nShell,k),DShell(nShell,k)
|
||||
enddo
|
||||
enddo
|
||||
write(*,'(A28)') '------------------'
|
||||
enddo
|
||||
|
||||
! Total number of shells
|
||||
|
||||
write(*,'(A28,1X,I16)') 'Number of shells in ABS',nShell
|
||||
write(*,'(A28)') '------------------'
|
||||
write(*,*)
|
||||
|
||||
! Close file with basis set specification
|
||||
|
||||
close(unit=3)
|
||||
|
||||
end subroutine read_auxiliary_basis
|
118
src/utils/read_basis.f90
Normal file
118
src/utils/read_basis.f90
Normal file
@ -0,0 +1,118 @@
|
||||
subroutine read_basis(nNuc,rNuc,nBas,nO,nV,nShell,TotAngMomShell,CenterShell,KShell,DShell,ExpShell)
|
||||
|
||||
! Read basis set information
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nNuc,nO
|
||||
double precision,intent(in) :: rNuc(nNuc,ncart)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: nShAt,iNuc,iShell
|
||||
integer :: i,j,k
|
||||
character :: shelltype
|
||||
|
||||
! Output variables
|
||||
|
||||
integer,intent(out) :: nShell,nBas
|
||||
double precision,intent(out) :: CenterShell(maxShell,ncart)
|
||||
integer,intent(out) :: TotAngMomShell(maxShell),KShell(maxShell)
|
||||
double precision,intent(out) :: DShell(maxShell,maxK),ExpShell(maxShell,maxK)
|
||||
integer,intent(out) :: nV
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Primary basis set information
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
! Open file with basis set specification
|
||||
|
||||
open(unit=2,file='input/basis')
|
||||
|
||||
! Read basis information
|
||||
|
||||
write(*,'(A28)') 'Gaussian basis set'
|
||||
write(*,'(A28)') '------------------'
|
||||
|
||||
nShell = 0
|
||||
do i=1,nNuc
|
||||
read(2,*) iNuc,nShAt
|
||||
write(*,'(A28,1X,I16)') 'Atom n. ',iNuc
|
||||
write(*,'(A28,1X,I16)') 'number of shells ',nShAt
|
||||
write(*,'(A28)') '------------------'
|
||||
|
||||
! Basis function centers
|
||||
|
||||
do j=1,nShAt
|
||||
nShell = nShell + 1
|
||||
do k=1,ncart
|
||||
CenterShell(nShell,k) = rNuc(iNuc,k)
|
||||
enddo
|
||||
|
||||
! Shell type and contraction degree
|
||||
|
||||
read(2,*) shelltype,KShell(nShell)
|
||||
if(shelltype == "S") then
|
||||
TotAngMomShell(nShell) = 0
|
||||
write(*,'(A28,1X,I16)') 's-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "P") then
|
||||
TotAngMomShell(nShell) = 1
|
||||
write(*,'(A28,1X,I16)') 'p-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "D") then
|
||||
TotAngMomShell(nShell) = 2
|
||||
write(*,'(A28,1X,I16)') 'd-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "F") then
|
||||
TotAngMomShell(nShell) = 3
|
||||
write(*,'(A28,1X,I16)') 'f-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "G") then
|
||||
TotAngMomShell(nShell) = 4
|
||||
write(*,'(A28,1X,I16)') 'g-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "H") then
|
||||
TotAngMomShell(nShell) = 5
|
||||
write(*,'(A28,1X,I16)') 'h-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "I") then
|
||||
TotAngMomShell(nShell) = 6
|
||||
write(*,'(A28,1X,I16)') 'i-type shell with K = ',KShell(nShell)
|
||||
endif
|
||||
|
||||
! Read exponents and contraction coefficients
|
||||
|
||||
write(*,'(A28,1X,A16,A16)') '','Exponents','Contraction'
|
||||
do k=1,Kshell(nShell)
|
||||
read(2,*) ExpShell(nShell,k),DShell(nShell,k)
|
||||
write(*,'(A28,1X,F16.10,F16.10)') '',ExpShell(nShell,k),DShell(nShell,k)
|
||||
enddo
|
||||
enddo
|
||||
write(*,'(A28)') '------------------'
|
||||
enddo
|
||||
|
||||
! Total number of shells
|
||||
|
||||
write(*,'(A28,1X,I16)') 'Number of shells',nShell
|
||||
write(*,'(A28)') '------------------'
|
||||
write(*,*)
|
||||
|
||||
! Close file with basis set specification
|
||||
|
||||
close(unit=2)
|
||||
|
||||
! Calculate number of basis functions
|
||||
|
||||
nBas = 0
|
||||
do iShell=1,nShell
|
||||
nBas = nBas + (TotAngMomShell(iShell)*TotAngMomShell(iShell) + 3*TotAngMomShell(iShell) + 2)/2
|
||||
enddo
|
||||
|
||||
write(*,'(A28)') '------------------'
|
||||
write(*,'(A28,1X,I16)') 'Number of basis functions',NBas
|
||||
write(*,'(A28)') '------------------'
|
||||
write(*,*)
|
||||
|
||||
! Number of virtual orbitals
|
||||
|
||||
nV = nBas - nO
|
||||
|
||||
end subroutine read_basis
|
68
src/utils/read_geometry.f90
Normal file
68
src/utils/read_geometry.f90
Normal file
@ -0,0 +1,68 @@
|
||||
subroutine read_geometry(nNuc,ZNuc,rNuc,ENuc)
|
||||
|
||||
! Read molecular geometry
|
||||
|
||||
implicit none
|
||||
|
||||
include 'parameters.h'
|
||||
|
||||
! Ouput variables
|
||||
|
||||
integer,intent(in) :: nNuc
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: i,j
|
||||
double precision :: RAB
|
||||
character(len=2) :: El
|
||||
integer,external :: element_number
|
||||
|
||||
! Ouput variables
|
||||
|
||||
double precision,intent(out) :: ZNuc(nNuc),rNuc(nNuc,ncart),ENuc
|
||||
|
||||
! Open file with geometry specification
|
||||
|
||||
open(unit=1,file='input/molecule')
|
||||
|
||||
! Read geometry
|
||||
|
||||
read(1,*)
|
||||
read(1,*)
|
||||
read(1,*)
|
||||
|
||||
do i=1,nNuc
|
||||
read(1,*) El,rNuc(i,1),rNuc(i,2),rNuc(i,3)
|
||||
ZNuc(i) = element_number(El)
|
||||
enddo
|
||||
|
||||
! Compute nuclear repulsion energy
|
||||
|
||||
ENuc = 0
|
||||
|
||||
do i=1,nNuc-1
|
||||
do j=i+1,nNuc
|
||||
RAB = (rNuc(i,1)-rNuc(j,1))**2 + (rNuc(i,2)-rNuc(j,2))**2 + (rNuc(i,3)-rNuc(j,3))**2
|
||||
ENuc = ENuc + ZNuc(i)*ZNuc(j)/sqrt(RAB)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Close file with geometry specification
|
||||
close(unit=1)
|
||||
|
||||
! Print geometry
|
||||
write(*,'(A28)') '------------------'
|
||||
write(*,'(A28)') 'Molecular geometry'
|
||||
write(*,'(A28)') '------------------'
|
||||
do i=1,nNuc
|
||||
write(*,'(A28,1X,I16)') 'Atom n. ',i
|
||||
write(*,'(A28,1X,F16.10)') 'Z = ',ZNuc(i)
|
||||
write(*,'(A28,1X,F16.10,F16.10,F16.10)') 'Atom coordinates:',(rNuc(i,j),j=1,ncart)
|
||||
enddo
|
||||
write(*,*)
|
||||
write(*,'(A28)') '------------------'
|
||||
write(*,'(A28,1X,F16.10)') 'Nuclear repulsion energy = ',ENuc
|
||||
write(*,'(A28)') '------------------'
|
||||
write(*,*)
|
||||
|
||||
end subroutine read_geometry
|
119
src/utils/read_integrals.f90
Normal file
119
src/utils/read_integrals.f90
Normal file
@ -0,0 +1,119 @@
|
||||
subroutine read_integrals(nBas,S,T,V,Hc,G)
|
||||
|
||||
! Read one- and two-electron integrals from files
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nBas
|
||||
|
||||
! Local variables
|
||||
|
||||
logical :: debug
|
||||
integer :: mu,nu,la,si
|
||||
double precision :: Ov,Kin,Nuc,ERI
|
||||
double precision :: scale
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: S(nBas,nBas),T(nBas,nBas),V(nBas,nBas),Hc(nBas,nBas),G(nBas,nBas,nBas,nBas)
|
||||
|
||||
! Open file with integrals
|
||||
|
||||
debug = .false.
|
||||
|
||||
scale = 1d0
|
||||
|
||||
open(unit=8 ,file='int/Ov.dat')
|
||||
open(unit=9 ,file='int/Kin.dat')
|
||||
open(unit=10,file='int/Nuc.dat')
|
||||
open(unit=11,file='int/ERI.dat')
|
||||
|
||||
! Read overlap integrals
|
||||
|
||||
S = 0d0
|
||||
do
|
||||
read(8,*,end=8) mu,nu,Ov
|
||||
S(mu,nu) = Ov
|
||||
enddo
|
||||
8 close(unit=8)
|
||||
|
||||
! Read kinetic integrals
|
||||
|
||||
T = 0d0
|
||||
do
|
||||
read(9,*,end=9) mu,nu,Kin
|
||||
T(mu,nu) = Kin/scale**2
|
||||
enddo
|
||||
9 close(unit=9)
|
||||
|
||||
! Read nuclear integrals
|
||||
|
||||
V = 0d0
|
||||
do
|
||||
read(10,*,end=10) mu,nu,Nuc
|
||||
V(mu,nu) = Nuc
|
||||
enddo
|
||||
10 close(unit=10)
|
||||
|
||||
! Define core Hamiltonian
|
||||
|
||||
Hc = T + V
|
||||
|
||||
! Read nuclear integrals
|
||||
|
||||
G = 0d0
|
||||
do
|
||||
read(11,*,end=11) mu,nu,la,si,ERI
|
||||
|
||||
ERI = ERI/scale
|
||||
! <12|34>
|
||||
G(mu,nu,la,si) = ERI
|
||||
! <32|14>
|
||||
G(la,nu,mu,si) = ERI
|
||||
! <14|32>
|
||||
G(mu,si,la,nu) = ERI
|
||||
! <34|12>
|
||||
G(la,si,mu,nu) = ERI
|
||||
! <41|23>
|
||||
G(si,mu,nu,la) = ERI
|
||||
! <23|41>
|
||||
G(nu,la,si,mu) = ERI
|
||||
! <21|43>
|
||||
G(nu,mu,si,la) = ERI
|
||||
! <43|21>
|
||||
G(si,la,nu,mu) = ERI
|
||||
enddo
|
||||
11 close(unit=11)
|
||||
|
||||
|
||||
! Print results
|
||||
if(debug) then
|
||||
write(*,'(A28)') '----------------------'
|
||||
write(*,'(A28)') 'Overlap integrals'
|
||||
write(*,'(A28)') '----------------------'
|
||||
call matout(nBas,nBas,S)
|
||||
write(*,*)
|
||||
write(*,'(A28)') '----------------------'
|
||||
write(*,'(A28)') 'Kinetic integrals'
|
||||
write(*,'(A28)') '----------------------'
|
||||
call matout(nBas,nBas,T)
|
||||
write(*,*)
|
||||
write(*,'(A28)') '----------------------'
|
||||
write(*,'(A28)') 'Nuclear integrals'
|
||||
write(*,'(A28)') '----------------------'
|
||||
call matout(nBas,nBas,V)
|
||||
write(*,*)
|
||||
write(*,'(A28)') '----------------------'
|
||||
write(*,'(A28)') 'Electron repulsion integrals'
|
||||
write(*,'(A28)') '----------------------'
|
||||
do la=1,nBas
|
||||
do si=1,nBas
|
||||
call matout(nBas,nBas,G(1,1,la,si))
|
||||
enddo
|
||||
enddo
|
||||
write(*,*)
|
||||
endif
|
||||
|
||||
end subroutine read_integrals
|
64
src/utils/read_molecule.f90
Normal file
64
src/utils/read_molecule.f90
Normal file
@ -0,0 +1,64 @@
|
||||
subroutine read_molecule(nNuc,nEl,nO,nC,nR)
|
||||
|
||||
! Read number of atoms and number of electrons
|
||||
|
||||
implicit none
|
||||
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(out) :: nNuc
|
||||
integer,intent(out) :: nEl(nspin)
|
||||
integer,intent(out) :: nO(nspin)
|
||||
integer,intent(out) :: nC(nspin)
|
||||
integer,intent(out) :: nR(nspin)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: nCore
|
||||
integer :: nRyd
|
||||
|
||||
! Open file with geometry specification
|
||||
|
||||
open(unit=1,file='input/molecule')
|
||||
|
||||
! Read number of atoms and number of electrons
|
||||
|
||||
read(1,*)
|
||||
read(1,*) nNuc,nEl(1),nEl(2),nCore,nRyd
|
||||
|
||||
if(mod(nCore,2) /= 0 .or. mod(nRyd,2) /= 0) then
|
||||
|
||||
print*, 'The number of core and Rydberg electrons must be even!'
|
||||
stop
|
||||
|
||||
end if
|
||||
|
||||
nO(:) = nEl(:)
|
||||
nC(:) = nCore/2
|
||||
nR(:) = nRyd/2
|
||||
|
||||
! Print results
|
||||
|
||||
write(*,'(A28)') '----------------------'
|
||||
write(*,'(A28,1X,I16)') 'Number of atoms',nNuc
|
||||
write(*,'(A28)') '----------------------'
|
||||
write(*,*)
|
||||
write(*,'(A28)') '----------------------'
|
||||
write(*,'(A28,1X,I16)') 'Number of spin-up electrons',nEl(1)
|
||||
write(*,'(A28,1X,I16)') 'Number of spin-down electrons',nEl(2)
|
||||
write(*,'(A28,1X,I16)') ' Total number of electrons',sum(nEl(:))
|
||||
write(*,'(A28)') '----------------------'
|
||||
write(*,*)
|
||||
write(*,'(A28)') '----------------------'
|
||||
write(*,'(A28,1X,I16)') 'Number of core electrons',sum(nC(:))
|
||||
write(*,'(A28,1X,I16)') 'Number of Rydberg electrons',sum(nR(:))
|
||||
write(*,'(A28)') '----------------------'
|
||||
write(*,*)
|
||||
|
||||
! Close file with geometry specification
|
||||
|
||||
close(unit=1)
|
||||
|
||||
end subroutine read_molecule
|
533
src/utils/utils.f90
Normal file
533
src/utils/utils.f90
Normal file
@ -0,0 +1,533 @@
|
||||
!------------------------------------------------------------------------
|
||||
function Kronecker_delta(i,j) result(delta)
|
||||
|
||||
! Kronecker Delta
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: i,j
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: delta
|
||||
|
||||
if(i == j) then
|
||||
delta = 1d0
|
||||
else
|
||||
delta = 0d0
|
||||
endif
|
||||
|
||||
end function Kronecker_delta
|
||||
|
||||
function KroneckerDelta(i,j) result(delta)
|
||||
|
||||
! Kronecker Delta
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: i,j
|
||||
|
||||
|
||||
! Output variables
|
||||
|
||||
integer :: delta
|
||||
|
||||
if(i == j) then
|
||||
delta = 1
|
||||
else
|
||||
delta = 0
|
||||
endif
|
||||
|
||||
end function KroneckerDelta
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
subroutine matout(m,n,A)
|
||||
|
||||
! Print the MxN array A
|
||||
|
||||
implicit none
|
||||
|
||||
integer,parameter :: ncol = 5
|
||||
double precision,parameter :: small = 1d-10
|
||||
integer,intent(in) :: m,n
|
||||
double precision,intent(in) :: A(m,n)
|
||||
double precision :: B(ncol)
|
||||
integer :: ilower,iupper,num,i,j
|
||||
|
||||
do ilower=1,n,ncol
|
||||
iupper = min(ilower + ncol - 1,n)
|
||||
num = iupper - ilower + 1
|
||||
write(*,'(3X,10(9X,I6))') (j,j=ilower,iupper)
|
||||
do i=1,m
|
||||
do j=ilower,iupper
|
||||
B(j-ilower+1) = A(i,j)
|
||||
enddo
|
||||
do j=1,num
|
||||
if(abs(B(j)) < small) B(j) = 0d0
|
||||
enddo
|
||||
write(*,'(I7,10F15.8)') i,(B(j),j=1,num)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine matout
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
subroutine trace_vector(n,v,Tr)
|
||||
|
||||
! Calculate the trace of the vector v of length n
|
||||
!!! Please use the intrinsic fortran sum() !!!
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: n
|
||||
double precision,intent(in) :: v(n)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: i
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Tr
|
||||
|
||||
Tr = 0d0
|
||||
do i=1,n
|
||||
Tr = Tr + v(i)
|
||||
enddo
|
||||
|
||||
end subroutine trace_vector
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
function trace_matrix(n,A) result(Tr)
|
||||
|
||||
! Calculate the trace of the square matrix A
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: n
|
||||
double precision,intent(in) :: A(n,n)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: i
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: Tr
|
||||
|
||||
Tr = 0d0
|
||||
do i=1,n
|
||||
Tr = Tr + A(i,i)
|
||||
enddo
|
||||
|
||||
end function trace_matrix
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
subroutine compute_error(nData,Mean,Var,Error)
|
||||
|
||||
! Calculate the statistical error
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
double precision,intent(in) :: nData,Mean(3)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Error(3)
|
||||
double precision,intent(inout):: Var(3)
|
||||
|
||||
Error = sqrt((Var-Mean**2/nData)/nData/(nData-1d0))
|
||||
|
||||
end subroutine compute_error
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
subroutine identity_matrix(N,A)
|
||||
|
||||
! Set the matrix A to the identity matrix
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: N
|
||||
|
||||
! Local viaruabkes
|
||||
|
||||
integer :: i
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: A(N,N)
|
||||
|
||||
A = 0d0
|
||||
|
||||
do i=1,N
|
||||
A(i,i) = 1d0
|
||||
enddo
|
||||
|
||||
end subroutine identity_matrix
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
subroutine prepend(N,M,A,b)
|
||||
|
||||
! Prepend the vector b of size N into the matrix A of size NxM
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: N,M
|
||||
double precision,intent(in) :: b(N)
|
||||
|
||||
! Local viaruabkes
|
||||
|
||||
integer :: i,j
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: A(N,M)
|
||||
|
||||
|
||||
! print*,'b in append'
|
||||
! call matout(N,1,b)
|
||||
|
||||
do i=1,N
|
||||
do j=M-1,1,-1
|
||||
A(i,j+1) = A(i,j)
|
||||
enddo
|
||||
A(i,1) = b(i)
|
||||
enddo
|
||||
|
||||
end subroutine prepend
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
subroutine append(N,M,A,b)
|
||||
|
||||
! Append the vector b of size N into the matrix A of size NxM
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: N,M
|
||||
double precision,intent(in) :: b(N)
|
||||
|
||||
! Local viaruabkes
|
||||
|
||||
integer :: i,j
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: A(N,M)
|
||||
|
||||
do i=1,N
|
||||
do j=2,M
|
||||
A(i,j-1) = A(i,j)
|
||||
enddo
|
||||
A(i,M) = b(i)
|
||||
enddo
|
||||
|
||||
end subroutine append
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
subroutine AtDA(N,A,D,B)
|
||||
|
||||
! Perform B = At.D.A where A is a NxN matrix and D is a diagonal matrix given
|
||||
! as a vector of length N
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: N
|
||||
double precision,intent(in) :: A(N,N),D(N)
|
||||
|
||||
! Local viaruabkes
|
||||
|
||||
integer :: i,j,k
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: B(N,N)
|
||||
|
||||
B = 0d0
|
||||
|
||||
do i=1,N
|
||||
do j=1,N
|
||||
do k=1,N
|
||||
B(i,k) = B(i,k) + A(j,i)*D(j)*A(j,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine AtDA
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
subroutine ADAt(N,A,D,B)
|
||||
|
||||
! Perform B = A.D.At where A is a NxN matrix and D is a diagonal matrix given
|
||||
! as a vector of length N
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: N
|
||||
double precision,intent(in) :: A(N,N),D(N)
|
||||
|
||||
! Local viaruabkes
|
||||
|
||||
integer :: i,j,k
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: B(N,N)
|
||||
|
||||
B = 0d0
|
||||
|
||||
do i=1,N
|
||||
do j=1,N
|
||||
do k=1,N
|
||||
B(i,k) = B(i,k) + A(i,j)*D(j)*A(k,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine ADAt
|
||||
!------------------------------------------------------------------------
|
||||
subroutine DA(N,D,A)
|
||||
|
||||
! Perform A <- D.A where A is a NxN matrix and D is a diagonal matrix given
|
||||
! as a vector of length N
|
||||
|
||||
implicit none
|
||||
|
||||
integer,intent(in) :: N
|
||||
integer :: i,j,k
|
||||
double precision,intent(in) :: D(N)
|
||||
double precision,intent(inout):: A(N,N)
|
||||
|
||||
do i=1,N
|
||||
do j=1,N
|
||||
A(i,j) = D(i)*A(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine DA
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
subroutine AD(N,A,D)
|
||||
|
||||
! Perform A <- A.D where A is a NxN matrix and D is a diagonal matrix given
|
||||
! as a vector of length N
|
||||
|
||||
implicit none
|
||||
|
||||
integer,intent(in) :: N
|
||||
integer :: i,j,k
|
||||
double precision,intent(in) :: D(N)
|
||||
double precision,intent(inout):: A(N,N)
|
||||
|
||||
do i=1,N
|
||||
do j=1,N
|
||||
A(i,j) = A(i,j)*D(j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine AD
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
subroutine print_warning(message)
|
||||
|
||||
! Print warning
|
||||
|
||||
implicit none
|
||||
|
||||
character(len=*),intent(in) :: message
|
||||
|
||||
write(*,*) message
|
||||
|
||||
end subroutine print_warning
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
subroutine CalcTrAB(n,A,B,Tr)
|
||||
|
||||
! Calculate the trace of the square matrix A.B
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: n
|
||||
double precision,intent(in) :: A(n,n),B(n,n)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: i,j
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Tr
|
||||
|
||||
Tr = 0d0
|
||||
do i=1,n
|
||||
do j=1,n
|
||||
Tr = Tr + A(i,j)*B(j,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine CalcTrAB
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
function EpsilonSwitch(i,j) result(delta)
|
||||
|
||||
! Epsilon function
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: i,j
|
||||
integer :: delta
|
||||
|
||||
if(i <= j) then
|
||||
delta = 1
|
||||
else
|
||||
delta = -1
|
||||
endif
|
||||
|
||||
end function EpsilonSwitch
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
function KappaCross(i,j,k) result(kappa)
|
||||
|
||||
! kappa(i,j,k) = eps(i,j) delta(i,k) - eps(k,i) delta(i,j)
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: i,j,k
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: EpsilonSwitch,KroneckerDelta
|
||||
double precision :: kappa
|
||||
|
||||
kappa = dble(EpsilonSwitch(i,j)*KroneckerDelta(i,k) - EpsilonSwitch(k,i)*KroneckerDelta(i,j))
|
||||
|
||||
end function KappaCross
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
subroutine CalcInv3(a,det)
|
||||
|
||||
! Calculate the inverse and the determinant of a 3x3 matrix
|
||||
|
||||
implicit none
|
||||
|
||||
double precision,intent(inout) :: a(3,3)
|
||||
double precision, intent(inout) :: det
|
||||
double precision :: b(3,3)
|
||||
integer :: i,j
|
||||
|
||||
det = a(1,1)*(a(2,2)*a(3,3)-a(2,3)*a(3,2)) &
|
||||
- a(1,2)*(a(2,1)*a(3,3)-a(2,3)*a(3,1)) &
|
||||
+ a(1,3)*(a(2,1)*a(3,2)-a(2,2)*a(3,1))
|
||||
|
||||
do i=1,3
|
||||
b(i,1) = a(i,1)
|
||||
b(i,2) = a(i,2)
|
||||
b(i,3) = a(i,3)
|
||||
enddo
|
||||
|
||||
a(1,1) = b(2,2)*b(3,3) - b(2,3)*b(3,2)
|
||||
a(2,1) = b(2,3)*b(3,1) - b(2,1)*b(3,3)
|
||||
a(3,1) = b(2,1)*b(3,2) - b(2,2)*b(3,1)
|
||||
|
||||
a(1,2) = b(1,3)*b(3,2) - b(1,2)*b(3,3)
|
||||
a(2,2) = b(1,1)*b(3,3) - b(1,3)*b(3,1)
|
||||
a(3,2) = b(1,2)*b(3,1) - b(1,1)*b(3,2)
|
||||
|
||||
a(1,3) = b(1,2)*b(2,3) - b(1,3)*b(2,2)
|
||||
a(2,3) = b(1,3)*b(2,1) - b(1,1)*b(2,3)
|
||||
a(3,3) = b(1,1)*b(2,2) - b(1,2)*b(2,1)
|
||||
|
||||
do i=1,3
|
||||
do j=1,3
|
||||
a(i,j) = a(i,j)/det
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine CalcInv3
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
subroutine CalcInv4(a,det)
|
||||
|
||||
implicit none
|
||||
|
||||
double precision,intent(inout) :: a(4,4)
|
||||
double precision,intent(inout) :: det
|
||||
double precision :: b(4,4)
|
||||
integer :: i,j
|
||||
|
||||
det = a(1,1)*(a(2,2)*(a(3,3)*a(4,4)-a(3,4)*a(4,3)) &
|
||||
-a(2,3)*(a(3,2)*a(4,4)-a(3,4)*a(4,2)) &
|
||||
+a(2,4)*(a(3,2)*a(4,3)-a(3,3)*a(4,2))) &
|
||||
- a(1,2)*(a(2,1)*(a(3,3)*a(4,4)-a(3,4)*a(4,3)) &
|
||||
-a(2,3)*(a(3,1)*a(4,4)-a(3,4)*a(4,1)) &
|
||||
+a(2,4)*(a(3,1)*a(4,3)-a(3,3)*a(4,1))) &
|
||||
+ a(1,3)*(a(2,1)*(a(3,2)*a(4,4)-a(3,4)*a(4,2)) &
|
||||
-a(2,2)*(a(3,1)*a(4,4)-a(3,4)*a(4,1)) &
|
||||
+a(2,4)*(a(3,1)*a(4,2)-a(3,2)*a(4,1))) &
|
||||
- a(1,4)*(a(2,1)*(a(3,2)*a(4,3)-a(3,3)*a(4,2)) &
|
||||
-a(2,2)*(a(3,1)*a(4,3)-a(3,3)*a(4,1)) &
|
||||
+a(2,3)*(a(3,1)*a(4,2)-a(3,2)*a(4,1)))
|
||||
do i=1,4
|
||||
b(1,i) = a(1,i)
|
||||
b(2,i) = a(2,i)
|
||||
b(3,i) = a(3,i)
|
||||
b(4,i) = a(4,i)
|
||||
enddo
|
||||
|
||||
a(1,1) = b(2,2)*(b(3,3)*b(4,4)-b(3,4)*b(4,3))-b(2,3)*(b(3,2)*b(4,4)-b(3,4)*b(4,2))+b(2,4)*(b(3,2)*b(4,3)-b(3,3)*b(4,2))
|
||||
a(2,1) = -b(2,1)*(b(3,3)*b(4,4)-b(3,4)*b(4,3))+b(2,3)*(b(3,1)*b(4,4)-b(3,4)*b(4,1))-b(2,4)*(b(3,1)*b(4,3)-b(3,3)*b(4,1))
|
||||
a(3,1) = b(2,1)*(b(3,2)*b(4,4)-b(3,4)*b(4,2))-b(2,2)*(b(3,1)*b(4,4)-b(3,4)*b(4,1))+b(2,4)*(b(3,1)*b(4,2)-b(3,2)*b(4,1))
|
||||
a(4,1) = -b(2,1)*(b(3,2)*b(4,3)-b(3,3)*b(4,2))+b(2,2)*(b(3,1)*b(4,3)-b(3,3)*b(4,1))-b(2,3)*(b(3,1)*b(4,2)-b(3,2)*b(4,1))
|
||||
|
||||
a(1,2) = -b(1,2)*(b(3,3)*b(4,4)-b(3,4)*b(4,3))+b(1,3)*(b(3,2)*b(4,4)-b(3,4)*b(4,2))-b(1,4)*(b(3,2)*b(4,3)-b(3,3)*b(4,2))
|
||||
a(2,2) = b(1,1)*(b(3,3)*b(4,4)-b(3,4)*b(4,3))-b(1,3)*(b(3,1)*b(4,4)-b(3,4)*b(4,1))+b(1,4)*(b(3,1)*b(4,3)-b(3,3)*b(4,1))
|
||||
a(3,2) = -b(1,1)*(b(3,2)*b(4,4)-b(3,4)*b(4,2))+b(1,2)*(b(3,1)*b(4,4)-b(3,4)*b(4,1))-b(1,4)*(b(3,1)*b(4,2)-b(3,2)*b(4,1))
|
||||
a(4,2) = b(1,1)*(b(3,2)*b(4,3)-b(3,3)*b(4,2))-b(1,2)*(b(3,1)*b(4,3)-b(3,3)*b(4,1))+b(1,3)*(b(3,1)*b(4,2)-b(3,2)*b(4,1))
|
||||
|
||||
a(1,3) = b(1,2)*(b(2,3)*b(4,4)-b(2,4)*b(4,3))-b(1,3)*(b(2,2)*b(4,4)-b(2,4)*b(4,2))+b(1,4)*(b(2,2)*b(4,3)-b(2,3)*b(4,2))
|
||||
a(2,3) = -b(1,1)*(b(2,3)*b(4,4)-b(2,4)*b(4,3))+b(1,3)*(b(2,1)*b(4,4)-b(2,4)*b(4,1))-b(1,4)*(b(2,1)*b(4,3)-b(2,3)*b(4,1))
|
||||
a(3,3) = b(1,1)*(b(2,2)*b(4,4)-b(2,4)*b(4,2))-b(1,2)*(b(2,1)*b(4,4)-b(2,4)*b(4,1))+b(1,4)*(b(2,1)*b(4,2)-b(2,2)*b(4,1))
|
||||
a(4,3) = -b(1,1)*(b(2,2)*b(4,3)-b(2,3)*b(4,2))+b(1,2)*(b(2,1)*b(4,3)-b(2,3)*b(4,1))-b(1,3)*(b(2,1)*b(4,2)-b(2,2)*b(4,1))
|
||||
|
||||
a(1,4) = -b(1,2)*(b(2,3)*b(3,4)-b(2,4)*b(3,3))+b(1,3)*(b(2,2)*b(3,4)-b(2,4)*b(3,2))-b(1,4)*(b(2,2)*b(3,3)-b(2,3)*b(3,2))
|
||||
a(2,4) = b(1,1)*(b(2,3)*b(3,4)-b(2,4)*b(3,3))-b(1,3)*(b(2,1)*b(3,4)-b(2,4)*b(3,1))+b(1,4)*(b(2,1)*b(3,3)-b(2,3)*b(3,1))
|
||||
a(3,4) = -b(1,1)*(b(2,2)*b(3,4)-b(2,4)*b(3,2))+b(1,2)*(b(2,1)*b(3,4)-b(2,4)*b(3,1))-b(1,4)*(b(2,1)*b(3,2)-b(2,2)*b(3,1))
|
||||
a(4,4) = b(1,1)*(b(2,2)*b(3,3)-b(2,3)*b(3,2))-b(1,2)*(b(2,1)*b(3,3)-b(2,3)*b(3,1))+b(1,3)*(b(2,1)*b(3,2)-b(2,2)*b(3,1))
|
||||
|
||||
do i=1,4
|
||||
do j=1,4
|
||||
a(i,j) = a(i,j)/det
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine CalcInv4
|
207
src/utils/wrap_lapack.f90
Normal file
207
src/utils/wrap_lapack.f90
Normal file
@ -0,0 +1,207 @@
|
||||
!subroutine eigenvalues_non_symmetric_matrix(N,A,e)
|
||||
!
|
||||
!! Diagonalize a square matrix
|
||||
!
|
||||
! implicit none
|
||||
!
|
||||
!! Input variables
|
||||
!
|
||||
! integer,intent(in) :: N
|
||||
! double precision,intent(inout):: A(N,N)
|
||||
! double precision,intent(out) :: e(N)
|
||||
!
|
||||
!! Local variables
|
||||
!
|
||||
! integer :: lwork,info
|
||||
! double precision,allocatable :: work(:)
|
||||
!
|
||||
!! Memory allocation
|
||||
!
|
||||
! allocate(eRe(N),eIm(N),work(3*N))
|
||||
! lwork = size(work)
|
||||
!
|
||||
! call DGEEV('N','N',N,A,N, eRe, eIm, 0d0,1, VR,LDVR, WORK, LWORK, INFO )
|
||||
!
|
||||
! if(info /= 0) then
|
||||
! print*,'Problem in diagonalize_matrix (dseev)!!'
|
||||
! stop
|
||||
! endif
|
||||
!
|
||||
!end subroutine eigenvalues_non_symmetric_matrix
|
||||
|
||||
subroutine diagonalize_matrix(N,A,e)
|
||||
|
||||
! Diagonalize a square matrix
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: N
|
||||
double precision,intent(inout):: A(N,N)
|
||||
double precision,intent(out) :: e(N)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: lwork,info
|
||||
double precision,allocatable :: work(:)
|
||||
|
||||
! Memory allocation
|
||||
|
||||
allocate(work(3*N))
|
||||
lwork = size(work)
|
||||
|
||||
call dsyev('V','U',N,A,N,e,work,lwork,info)
|
||||
|
||||
if(info /= 0) then
|
||||
print*,'Problem in diagonalize_matrix (dsyev)!!'
|
||||
endif
|
||||
|
||||
end subroutine diagonalize_matrix
|
||||
|
||||
subroutine svd(N,A,U,D,Vt)
|
||||
|
||||
! Compute A = U.D.Vt
|
||||
! Dimension of A is NxN
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: N
|
||||
double precision,intent(in) :: A(N,N)
|
||||
double precision,intent(out) :: U(N,N)
|
||||
double precision,intent(out) :: Vt(N,N)
|
||||
double precision,intent(out) :: D(N)
|
||||
double precision,allocatable :: work(:)
|
||||
integer :: info,lwork
|
||||
|
||||
double precision,allocatable :: scr(:,:)
|
||||
|
||||
allocate (scr(N,N))
|
||||
|
||||
scr(:,:) = A(:,:)
|
||||
|
||||
! Find optimal size for temporary arrays
|
||||
|
||||
allocate(work(1))
|
||||
|
||||
lwork = -1
|
||||
call dgesvd('A','A',N,N,scr,N,D,U,N,Vt,N,work,lwork,info)
|
||||
lwork = int(work(1))
|
||||
|
||||
deallocate(work)
|
||||
|
||||
allocate(work(lwork))
|
||||
|
||||
call dgesvd('A','A',N,N,scr,N,D,U,N,Vt,N,work,lwork,info)
|
||||
|
||||
deallocate(work,scr)
|
||||
|
||||
if (info /= 0) then
|
||||
print *, info, ': SVD failed'
|
||||
stop
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
subroutine inverse_matrix(N,A,B)
|
||||
|
||||
! Returns the inverse of the square matrix A in B
|
||||
|
||||
implicit none
|
||||
|
||||
integer,intent(in) :: N
|
||||
double precision, intent(in) :: A(N,N)
|
||||
double precision, intent(out) :: B(N,N)
|
||||
|
||||
integer :: info,lwork
|
||||
integer, allocatable :: ipiv(:)
|
||||
double precision,allocatable :: work(:)
|
||||
|
||||
allocate (ipiv(N),work(N*N))
|
||||
lwork = size(work)
|
||||
|
||||
B(1:N,1:N) = A(1:N,1:N)
|
||||
|
||||
call dgetrf(N,N,B,N,ipiv,info)
|
||||
|
||||
if (info /= 0) then
|
||||
|
||||
print*,info
|
||||
stop 'error in inverse (dgetrf)!!'
|
||||
|
||||
endif
|
||||
|
||||
call dgetri(N,B,N,ipiv,work,lwork,info)
|
||||
|
||||
if (info /= 0) then
|
||||
|
||||
print *, info
|
||||
stop 'error in inverse (dgetri)!!'
|
||||
|
||||
endif
|
||||
|
||||
deallocate(ipiv,work)
|
||||
|
||||
end subroutine inverse_matrix
|
||||
|
||||
subroutine linear_solve(N,A,b,x,rcond)
|
||||
|
||||
! Solve the linear system A.x = b where A is a NxN matrix
|
||||
! and x and x are vectors of size N
|
||||
|
||||
implicit none
|
||||
|
||||
integer,intent(in) :: N
|
||||
double precision,intent(in) :: A(N,N),b(N),rcond
|
||||
double precision,intent(out) :: x(N)
|
||||
|
||||
integer :: info,lwork
|
||||
double precision :: ferr,berr
|
||||
integer,allocatable :: ipiv(:),iwork(:)
|
||||
double precision,allocatable :: AF(:,:),work(:)
|
||||
|
||||
lwork = 3*N
|
||||
allocate(AF(N,N),ipiv(N),work(lwork),iwork(N))
|
||||
|
||||
call dsysvx('N','U',N,1,A,N,AF,N,ipiv,b,N,x,N,rcond,ferr,berr,work,lwork,iwork,info)
|
||||
|
||||
! if (info /= 0) then
|
||||
|
||||
! print *, info
|
||||
! stop 'error in linear_solve (dsysvx)!!'
|
||||
|
||||
! endif
|
||||
|
||||
end subroutine linear_solve
|
||||
|
||||
subroutine easy_linear_solve(N,A,b,x)
|
||||
|
||||
! Solve the linear system A.x = b where A is a NxN matrix
|
||||
! and x and x are vectors of size N
|
||||
|
||||
implicit none
|
||||
|
||||
integer,intent(in) :: N
|
||||
double precision,intent(in) :: A(N,N),b(N)
|
||||
double precision,intent(out) :: x(N)
|
||||
|
||||
integer :: info,lwork
|
||||
integer,allocatable :: ipiv(:)
|
||||
double precision,allocatable :: work(:)
|
||||
|
||||
allocate(ipiv(N),work(N*N))
|
||||
lwork = size(work)
|
||||
|
||||
x = b
|
||||
|
||||
call dsysv('U',N,1,A,N,ipiv,x,N,work,lwork,info)
|
||||
|
||||
if (info /= 0) then
|
||||
|
||||
print *, info
|
||||
stop 'error in linear_solve (dsysv)!!'
|
||||
|
||||
endif
|
||||
|
||||
end subroutine easy_linear_solve
|
||||
|
Loading…
Reference in New Issue
Block a user