mirror of
https://github.com/pfloos/quack
synced 2024-12-23 04:43:42 +01:00
remove R subroutines and GOK
This commit is contained in:
parent
e3b7f70025
commit
c711a7e216
@ -1,351 +0,0 @@
|
||||
subroutine GOK_RKS(restart,x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,maxSCF,thresh, &
|
||||
max_diis,guess_type,nBas,AO,dAO,nO,nV,S,T,V,Hc,ERI,X,ENuc,Ew,c,occnum,Cx_choice)
|
||||
|
||||
! Perform restricted Kohn-Sham calculation for ensembles
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
logical,intent(in) :: restart
|
||||
integer,intent(in) :: x_rung,c_rung
|
||||
character(len=12),intent(in) :: x_DFA,c_DFA
|
||||
logical,intent(in) :: LDA_centered
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
double precision,intent(in) :: aCC_w1(3)
|
||||
double precision,intent(in) :: aCC_w2(3)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
integer,intent(in) :: maxSCF
|
||||
integer,intent(in) :: max_diis
|
||||
integer,intent(in) :: guess_type
|
||||
double precision,intent(in) :: thresh
|
||||
integer,intent(in) :: nBas
|
||||
double precision,intent(in) :: AO(nBas,nGrid)
|
||||
double precision,intent(in) :: dAO(ncart,nBas,nGrid)
|
||||
|
||||
integer,intent(in) :: nO
|
||||
integer,intent(in) :: nV
|
||||
double precision,intent(in) :: S(nBas,nBas)
|
||||
double precision,intent(in) :: T(nBas,nBas)
|
||||
double precision,intent(in) :: V(nBas,nBas)
|
||||
double precision,intent(in) :: Hc(nBas,nBas)
|
||||
double precision,intent(in) :: X(nBas,nBas)
|
||||
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
|
||||
double precision,intent(in) :: ENuc
|
||||
|
||||
double precision,intent(inout):: c(nBas,nBas)
|
||||
double precision,intent(in) :: occnum(nBas,nspin,nEns)
|
||||
integer,intent(in) :: Cx_choice
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: xc_rung
|
||||
integer :: nSCF,nBasSq
|
||||
integer :: n_diis
|
||||
double precision :: conv
|
||||
double precision :: rcond
|
||||
double precision :: ET
|
||||
double precision :: EV
|
||||
double precision :: EJ
|
||||
double precision :: Ex
|
||||
double precision :: Ec
|
||||
|
||||
double precision,allocatable :: eps(:)
|
||||
double precision,allocatable :: cp(:,:)
|
||||
double precision,allocatable :: J(:,:)
|
||||
double precision,allocatable :: F(:,:)
|
||||
double precision,allocatable :: Fp(:,:)
|
||||
double precision,allocatable :: Fx(:,:)
|
||||
double precision,allocatable :: FxHF(:,:)
|
||||
double precision,allocatable :: Fc(:,:)
|
||||
double precision,allocatable :: err(:,:)
|
||||
double precision,allocatable :: err_diis(:,:)
|
||||
double precision,allocatable :: F_diis(:,:)
|
||||
double precision,external :: trace_matrix
|
||||
double precision,external :: electron_number
|
||||
|
||||
double precision,allocatable :: Pw(:,:)
|
||||
double precision,allocatable :: rhow(:)
|
||||
double precision,allocatable :: drhow(:,:)
|
||||
double precision :: nEl
|
||||
|
||||
double precision,allocatable :: P(:,:,:)
|
||||
double precision,allocatable :: rho(:,:)
|
||||
double precision,allocatable :: drho(:,:,:)
|
||||
|
||||
double precision :: E(nEns)
|
||||
double precision :: Om(nEns)
|
||||
|
||||
integer :: iEns
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Ew
|
||||
|
||||
! Hello world
|
||||
|
||||
write(*,*)
|
||||
write(*,*)'************************************************'
|
||||
write(*,*)'* Restricted Kohn-Sham calculation *'
|
||||
write(*,*)'* *** for ensembles *** *'
|
||||
write(*,*)'************************************************'
|
||||
write(*,*)
|
||||
|
||||
! Useful stuff
|
||||
|
||||
nBasSq = nBas*nBas
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Rung of Jacob's ladder
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
! Select rung for exchange
|
||||
|
||||
write(*,*)
|
||||
write(*,*) '*******************************************************************'
|
||||
write(*,*) '* EXCHANGE RUNG *'
|
||||
write(*,*) '*******************************************************************'
|
||||
|
||||
call select_rung(x_rung,x_DFA)
|
||||
|
||||
! Select rung for correlation
|
||||
|
||||
write(*,*)
|
||||
write(*,*) '*******************************************************************'
|
||||
write(*,*) '* CORRELATION RUNG *'
|
||||
write(*,*) '*******************************************************************'
|
||||
|
||||
call select_rung(c_rung,c_DFA)
|
||||
|
||||
! Overall rung
|
||||
|
||||
xc_rung = max(x_rung,c_rung)
|
||||
|
||||
! Memory allocation
|
||||
|
||||
allocate(eps(nBas),cp(nBas,nBas),J(nBas,nBas), &
|
||||
F(nBas,nBas),Fp(nBas,nBas),Fx(nBas,nBas), &
|
||||
FxHF(nBas,nBas),Fc(nBas,nBas),err(nBas,nBas), &
|
||||
Pw(nBas,nBas),rhow(nGrid),drhow(ncart,nGrid), &
|
||||
err_diis(nBasSq,max_diis),F_diis(nBasSq,max_diis), &
|
||||
P(nBas,nBas,nEns),rho(nGrid,nEns),drho(ncart,nGrid,nEns))
|
||||
|
||||
! Guess coefficients and eigenvalues
|
||||
|
||||
if(.not. restart) then
|
||||
|
||||
! call mo_guess(nBas,nO,guess_type,S,Hc,ERI,J,Fx,X,cp,F,Fp,eps,c,P)
|
||||
|
||||
if(guess_type == 1) then
|
||||
|
||||
cp(:,:) = matmul(transpose(X(:,:)),matmul(Hc(:,:),X(:,:)))
|
||||
call diagonalize_matrix(nBas,cp(:,:),eps(:))
|
||||
c(:,:) = matmul(X(:,:),cp(:,:))
|
||||
|
||||
else
|
||||
|
||||
print*,'Wrong guess option'
|
||||
stop
|
||||
|
||||
end if
|
||||
|
||||
end if
|
||||
|
||||
! Initialization
|
||||
|
||||
nSCF = 0
|
||||
conv = 1d0
|
||||
|
||||
nEl = 0d0
|
||||
Ex = 0d0
|
||||
Ec = 0d0
|
||||
|
||||
Fx(:,:) = 0d0
|
||||
FxHF(:,:) = 0d0
|
||||
Fc(:,:) = 0d0
|
||||
|
||||
n_diis = 0
|
||||
F_diis(:,:) = 0d0
|
||||
err_diis(:,:) = 0d0
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Main SCF loop
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
write(*,*)
|
||||
write(*,*)'------------------------------------------------------------------------------------------'
|
||||
write(*,'(1X,A1,1X,A3,1X,A1,1X,A16,1X,A1,1X,A16,1X,A1,1X,A16,1X,A1,1X,A10,1X,A1,1X,A10,1X,A1,1X)') &
|
||||
'|','#','|','E(KS)','|','Ex(KS)','|','Ec(KS)','|','Conv','|','nEl','|'
|
||||
write(*,*)'------------------------------------------------------------------------------------------'
|
||||
|
||||
do while(conv > thresh .and. nSCF < maxSCF)
|
||||
|
||||
! Increment
|
||||
|
||||
nSCF = nSCF + 1
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute density matrix
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
call restricted_density_matrix(nBas,nEns,nO,c(:,:),P(:,:,:),occnum)
|
||||
|
||||
! Weight-dependent density matrix
|
||||
|
||||
Pw(:,:) = 0d0
|
||||
do iEns=1,nEns
|
||||
Pw(:,:) = Pw(:,:) + wEns(iEns)*P(:,:,iEns)
|
||||
end do
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute one-electron density and its gradient if necessary
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
do iEns=1,nEns
|
||||
call density(nGrid,nBas,P(:,:,iEns),AO(:,:),rho(:,iEns))
|
||||
end do
|
||||
|
||||
! Weight-dependent one-electron density
|
||||
|
||||
rhow(:) = 0d0
|
||||
do iEns=1,nEns
|
||||
rhow(:) = rhow(:) + wEns(iEns)*rho(:,iEns)
|
||||
end do
|
||||
|
||||
if(xc_rung > 1) then
|
||||
|
||||
! Compute gradient of the one-electron density
|
||||
|
||||
do iEns=1,nEns
|
||||
call gradient_density(nGrid,nBas,P(:,:,iEns),AO(:,:),dAO(:,:,:),drho(:,:,iEns))
|
||||
end do
|
||||
|
||||
! Weight-dependent one-electron density gradient
|
||||
|
||||
drhow(:,:) = 0d0
|
||||
do iEns=1,nEns
|
||||
drhow(:,:) = drhow(:,:) + wEns(iEns)*drho(:,:,iEns)
|
||||
end do
|
||||
|
||||
end if
|
||||
|
||||
! Build Coulomb repulsion
|
||||
|
||||
call hartree_coulomb(nBas,Pw(:,:),ERI(:,:,:,:),J(:,:))
|
||||
|
||||
! Compute exchange potential
|
||||
|
||||
call restricted_exchange_potential(x_rung,x_DFA,LDA_centered,nEns,wEns(:),aCC_w1,aCC_w2,nGrid,weight(:),nBas,Pw(:,:), &
|
||||
ERI(:,:,:,:),AO(:,:),dAO(:,:,:),rhow(:),drhow(:,:),Fx(:,:),FxHF(:,:),Cx_choice)
|
||||
|
||||
! Compute correlation potential
|
||||
|
||||
call restricted_correlation_potential(c_rung,c_DFA,LDA_centered,nEns,wEns(:),nGrid,weight(:), &
|
||||
nBas,AO(:,:),dAO(:,:,:),rhow(:),drhow(:,:),Fc(:,:))
|
||||
|
||||
! Build Fock operator
|
||||
|
||||
F(:,:) = Hc(:,:) + J(:,:) + Fx(:,:) + Fc(:,:)
|
||||
|
||||
! Check convergence
|
||||
|
||||
err(:,:) = matmul(F(:,:),matmul(Pw(:,:),S(:,:))) - matmul(matmul(S(:,:),Pw(:,:)),F(:,:))
|
||||
|
||||
conv = maxval(abs(err(:,:)))
|
||||
|
||||
! DIIS extrapolation
|
||||
|
||||
n_diis = min(n_diis+1,max_diis)
|
||||
call DIIS_extrapolation(rcond,nBasSq,nBasSq,n_diis,err_diis(:,:),F_diis(:,:),err(:,:),F(:,:))
|
||||
|
||||
! Reset DIIS if required
|
||||
|
||||
if(abs(rcond) < 1d-15) n_diis = 0
|
||||
|
||||
! Transform Fock matrix in orthogonal basis
|
||||
|
||||
Fp(:,:) = matmul(transpose(X(:,:)),matmul(F(:,:),X(:,:)))
|
||||
|
||||
! Diagonalize Fock matrix to get eigenvectors and eigenvalues
|
||||
|
||||
cp(:,:) = Fp(:,:)
|
||||
call diagonalize_matrix(nBas,cp(:,:),eps(:))
|
||||
|
||||
! Back-transform eigenvectors in non-orthogonal basis
|
||||
|
||||
c(:,:) = matmul(X(:,:),cp(:,:))
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute KS energy
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
! Kinetic energy
|
||||
|
||||
ET = trace_matrix(nBas,matmul(Pw(:,:),T(:,:)))
|
||||
|
||||
! Potential energy
|
||||
|
||||
EV = trace_matrix(nBas,matmul(Pw(:,:),V(:,:)))
|
||||
|
||||
! Coulomb energy
|
||||
|
||||
EJ = 0.5d0*trace_matrix(nBas,matmul(Pw(:,:),J(:,:)))
|
||||
|
||||
! Exchange energy
|
||||
|
||||
call restricted_exchange_energy(x_rung,x_DFA,LDA_centered,nEns,wEns(:),aCC_w1,aCC_w2,nGrid,weight(:),nBas, &
|
||||
Pw(:,:),FxHF(:,:),rhow(:),drhow(:,:),Ex,Cx_choice)
|
||||
|
||||
! Correlation energy
|
||||
|
||||
call restricted_correlation_energy(c_rung,c_DFA,LDA_centered,nEns,wEns(:),nGrid,weight(:),rhow(:),drhow(:,:),Ec)
|
||||
|
||||
! Total energy
|
||||
|
||||
Ew = ET + EV + EJ + Ex + Ec
|
||||
|
||||
! Check the grid accuracy by computing the number of electrons
|
||||
|
||||
nEl = electron_number(nGrid,weight(:),rhow(:))
|
||||
|
||||
! Dump results
|
||||
|
||||
write(*,'(1X,A1,1X,I3,1X,A1,1X,F16.10,1X,A1,1X,F16.10,1X,A1,1X,F16.10,1X,A1,1X,F10.6,1X,A1,1X,F10.6,1X,A1,1X)') &
|
||||
'|',nSCF,'|',Ew + ENuc,'|',Ex,'|',Ec,'|',conv,'|',nEl,'|'
|
||||
|
||||
end do
|
||||
write(*,*)'------------------------------------------------------------------------------------------'
|
||||
!------------------------------------------------------------------------
|
||||
! End of SCF loop
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
! Did it actually converge?
|
||||
|
||||
if(nSCF == maxSCF) then
|
||||
|
||||
write(*,*)
|
||||
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
|
||||
write(*,*)' Convergence failed '
|
||||
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
|
||||
write(*,*)
|
||||
|
||||
! stop
|
||||
|
||||
end if
|
||||
|
||||
! Compute final KS energy
|
||||
|
||||
call print_RKS(nBas,nO,eps(:),c(:,:),ENuc,ET,EV,EJ,Ex,Ec,Ew)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute individual energies from ensemble energy
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
call restricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns(:),aCC_w1,aCC_w2,nGrid,weight(:), &
|
||||
nBas,nO,nV,T(:,:),V(:,:),ERI(:,:,:,:),ENuc,eps(:),Pw(:,:),rhow(:),drhow(:,:), &
|
||||
J(:,:),P(:,:,:),rho(:,:),drho(:,:,:),Ew,E(:),Om(:),occnum,Cx_choice)
|
||||
|
||||
end subroutine GOK_RKS
|
@ -1,375 +0,0 @@
|
||||
subroutine GOK_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nGrid,weight,aCC_w1,aCC_w2,maxSCF,thresh,max_diis,guess_type, &
|
||||
nBas,AO,dAO,nO,nV,S,T,V,Hc,ERI,X,ENuc,Ew,occnum,Cx_choice)
|
||||
|
||||
! Perform unrestricted Kohn-Sham calculation for ensembles
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: x_rung,c_rung
|
||||
character(len=12),intent(in) :: x_DFA,c_DFA
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: aCC_w1(3)
|
||||
double precision,intent(in) :: aCC_w2(3)
|
||||
integer,intent(in) :: maxSCF,max_diis,guess_type
|
||||
double precision,intent(in) :: thresh
|
||||
integer,intent(in) :: nBas
|
||||
double precision,intent(in) :: AO(nBas,nGrid)
|
||||
double precision,intent(in) :: dAO(ncart,nBas,nGrid)
|
||||
|
||||
integer,intent(in) :: nO(nspin),nV(nspin)
|
||||
double precision,intent(in) :: S(nBas,nBas)
|
||||
double precision,intent(in) :: T(nBas,nBas)
|
||||
double precision,intent(in) :: V(nBas,nBas)
|
||||
double precision,intent(in) :: Hc(nBas,nBas)
|
||||
double precision,intent(in) :: X(nBas,nBas)
|
||||
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
|
||||
double precision,intent(in) :: ENuc
|
||||
double precision,intent(in) :: occnum(nspin,2,nEns)
|
||||
integer,intent(in) :: Cx_choice
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: xc_rung
|
||||
logical :: LDA_centered = .false.
|
||||
integer :: nSCF,nBasSq
|
||||
integer :: n_diis
|
||||
double precision :: conv
|
||||
double precision :: rcond(nspin)
|
||||
double precision :: ET(nspin)
|
||||
double precision :: EV(nspin)
|
||||
double precision :: EJ(nsp)
|
||||
double precision :: Ex(nspin)
|
||||
double precision :: Ec(nsp)
|
||||
double precision :: Ew
|
||||
|
||||
double precision,allocatable :: eps(:,:)
|
||||
double precision,allocatable :: c(:,:,:)
|
||||
double precision,allocatable :: cp(:,:,:)
|
||||
double precision,allocatable :: J(:,:,:)
|
||||
double precision,allocatable :: F(:,:,:)
|
||||
double precision,allocatable :: Fp(:,:,:)
|
||||
double precision,allocatable :: Fx(:,:,:)
|
||||
double precision,allocatable :: FxHF(:,:,:)
|
||||
double precision,allocatable :: Fc(:,:,:)
|
||||
double precision,allocatable :: err(:,:,:)
|
||||
double precision,allocatable :: err_diis(:,:,:)
|
||||
double precision,allocatable :: F_diis(:,:,:)
|
||||
double precision,external :: trace_matrix
|
||||
double precision,external :: electron_number
|
||||
|
||||
double precision,allocatable :: Pw(:,:,:)
|
||||
double precision,allocatable :: rhow(:,:)
|
||||
double precision,allocatable :: drhow(:,:,:)
|
||||
double precision :: nEl(nspin)
|
||||
|
||||
double precision,allocatable :: P(:,:,:,:)
|
||||
double precision,allocatable :: rho(:,:,:)
|
||||
double precision,allocatable :: drho(:,:,:,:)
|
||||
|
||||
double precision :: E(nEns)
|
||||
double precision :: Om(nEns)
|
||||
|
||||
integer :: ispin,iEns
|
||||
|
||||
! Hello world
|
||||
|
||||
write(*,*)
|
||||
write(*,*)'************************************************'
|
||||
write(*,*)'* Unrestricted Kohn-Sham calculation *'
|
||||
write(*,*)'* *** for ensembles *** *'
|
||||
write(*,*)'************************************************'
|
||||
write(*,*)
|
||||
|
||||
! Useful stuff
|
||||
|
||||
nBasSq = nBas*nBas
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Rung of Jacob's ladder
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
! Select rung for exchange
|
||||
|
||||
write(*,*)
|
||||
write(*,*) '*******************************************************************'
|
||||
write(*,*) '* Exchange rung *'
|
||||
write(*,*) '*******************************************************************'
|
||||
|
||||
call select_rung(x_rung,x_DFA)
|
||||
|
||||
! Select rung for correlation
|
||||
|
||||
write(*,*)
|
||||
write(*,*) '*******************************************************************'
|
||||
write(*,*) '* Correlation rung *'
|
||||
write(*,*) '*******************************************************************'
|
||||
|
||||
call select_rung(c_rung,c_DFA)
|
||||
|
||||
! Overall rung
|
||||
|
||||
xc_rung = max(x_rung,c_rung)
|
||||
|
||||
! Memory allocation
|
||||
|
||||
allocate(eps(nBas,nspin),c(nBas,nBas,nspin),cp(nBas,nBas,nspin), &
|
||||
J(nBas,nBas,nspin),F(nBas,nBas,nspin),Fp(nBas,nBas,nspin), &
|
||||
Fx(nBas,nBas,nspin),FxHF(nBas,nBas,nspin),Fc(nBas,nBas,nspin),err(nBas,nBas,nspin), &
|
||||
Pw(nBas,nBas,nspin),rhow(nGrid,nspin),drhow(ncart,nGrid,nspin), &
|
||||
err_diis(nBasSq,max_diis,nspin),F_diis(nBasSq,max_diis,nspin), &
|
||||
P(nBas,nBas,nspin,nEns),rho(nGrid,nspin,nEns),drho(ncart,nGrid,nspin,nEns))
|
||||
|
||||
! Guess coefficients and eigenvalues
|
||||
|
||||
if(guess_type == 1) then
|
||||
|
||||
do ispin=1,nspin
|
||||
cp(:,:,ispin) = matmul(transpose(X(:,:)),matmul(Hc(:,:),X(:,:)))
|
||||
call diagonalize_matrix(nBas,cp(:,:,ispin),eps(:,ispin))
|
||||
c(:,:,ispin) = matmul(X(:,:),cp(:,:,ispin))
|
||||
end do
|
||||
|
||||
else if(guess_type == 2) then
|
||||
|
||||
do ispin=1,nspin
|
||||
call random_number(F(:,:,ispin))
|
||||
end do
|
||||
else
|
||||
|
||||
print*,'Wrong guess option'
|
||||
stop
|
||||
|
||||
end if
|
||||
|
||||
! Initialization
|
||||
|
||||
nSCF = 0
|
||||
conv = 1d0
|
||||
|
||||
nEl(:) = 0d0
|
||||
Ex(:) = 0d0
|
||||
Ec(:) = 0d0
|
||||
|
||||
Fx(:,:,:) = 0d0
|
||||
FxHF(:,:,:) = 0d0
|
||||
Fc(:,:,:) = 0d0
|
||||
|
||||
n_diis = 0
|
||||
F_diis(:,:,:) = 0d0
|
||||
err_diis(:,:,:) = 0d0
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Main SCF loop
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
write(*,*)
|
||||
write(*,*)'------------------------------------------------------------------------------------------'
|
||||
write(*,'(1X,A1,1X,A3,1X,A1,1X,A16,1X,A1,1X,A16,1X,A1,1X,A16,1X,A1,1X,A10,1X,A1,1X,A10,1X,A1,1X)') &
|
||||
'|','#','|','E(KS)','|','Ex(KS)','|','Ec(KS)','|','Conv','|','nEl','|'
|
||||
write(*,*)'------------------------------------------------------------------------------------------'
|
||||
|
||||
do while(conv > thresh .and. nSCF < maxSCF)
|
||||
|
||||
! Increment
|
||||
|
||||
nSCF = nSCF + 1
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute density matrix
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
call unrestricted_density_matrix(nBas,nEns,nO(:),c(:,:,:),P(:,:,:,:),occnum)
|
||||
|
||||
! Weight-dependent density matrix
|
||||
|
||||
Pw(:,:,:) = 0d0
|
||||
do iEns=1,nEns
|
||||
Pw(:,:,:) = Pw(:,:,:) + wEns(iEns)*P(:,:,:,iEns)
|
||||
end do
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute one-electron density and its gradient if necessary
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
do ispin=1,nspin
|
||||
do iEns=1,nEns
|
||||
call density(nGrid,nBas,P(:,:,ispin,iEns),AO(:,:),rho(:,ispin,iEns))
|
||||
end do
|
||||
end do
|
||||
|
||||
! Weight-dependent one-electron density
|
||||
|
||||
rhow(:,:) = 0d0
|
||||
do iEns=1,nEns
|
||||
rhow(:,:) = rhow(:,:) + wEns(iEns)*rho(:,:,iEns)
|
||||
end do
|
||||
|
||||
if(xc_rung > 1) then
|
||||
|
||||
! Ground state density
|
||||
|
||||
do ispin=1,nspin
|
||||
do iEns=1,nEns
|
||||
call gradient_density(nGrid,nBas,P(:,:,ispin,iEns),AO(:,:),dAO(:,:,:),drho(:,:,ispin,iEns))
|
||||
end do
|
||||
end do
|
||||
|
||||
! Weight-dependent one-electron density
|
||||
|
||||
drhow(:,:,:) = 0d0
|
||||
do iEns=1,nEns
|
||||
drhow(:,:,:) = drhow(:,:,:) + wEns(iEns)*drho(:,:,:,iEns)
|
||||
end do
|
||||
|
||||
end if
|
||||
|
||||
! Build Coulomb repulsion
|
||||
|
||||
do ispin=1,nspin
|
||||
call hartree_coulomb(nBas,Pw(:,:,ispin),ERI(:,:,:,:),J(:,:,ispin))
|
||||
end do
|
||||
|
||||
! Compute exchange potential
|
||||
|
||||
do ispin=1,nspin
|
||||
call unrestricted_exchange_potential(x_rung,x_DFA,LDA_centered,nEns,wEns(:),aCC_w1,aCC_w2,nGrid,weight(:),nBas,&
|
||||
Pw(:,:,ispin),ERI(:,:,:,:),AO(:,:),dAO(:,:,:),rhow(:,ispin),drhow(:,:,ispin), &
|
||||
Fx(:,:,ispin),FxHF(:,:,ispin),Cx_choice)
|
||||
end do
|
||||
|
||||
! Compute correlation potential
|
||||
|
||||
call unrestricted_correlation_potential(c_rung,c_DFA,nEns,wEns,nGrid,weight,nBas,AO,dAO,rhow,drhow,Fc)
|
||||
|
||||
! Build Fock operator
|
||||
do ispin=1,nspin
|
||||
F(:,:,ispin) = Hc(:,:) + J(:,:,ispin) + J(:,:,mod(ispin,2)+1) + Fx(:,:,ispin) + Fc(:,:,ispin)
|
||||
end do
|
||||
|
||||
! Check convergence
|
||||
|
||||
do ispin=1,nspin
|
||||
err(:,:,ispin) = matmul(F(:,:,ispin),matmul(Pw(:,:,ispin),S(:,:))) - matmul(matmul(S(:,:),Pw(:,:,ispin)),F(:,:,ispin))
|
||||
end do
|
||||
|
||||
conv = maxval(abs(err(:,:,:)))
|
||||
|
||||
! DIIS extrapolation
|
||||
|
||||
n_diis = min(n_diis+1,max_diis)
|
||||
do ispin=1,nspin
|
||||
call DIIS_extrapolation(rcond(ispin),nBasSq,nBasSq,n_diis, &
|
||||
err_diis(:,:,ispin),F_diis(:,:,ispin),err(:,:,ispin),F(:,:,ispin))
|
||||
end do
|
||||
|
||||
! Reset DIIS if required
|
||||
|
||||
if(minval(rcond(:)) < 1d-15) n_diis = 0
|
||||
|
||||
! Transform Fock matrix in orthogonal basis
|
||||
|
||||
do ispin=1,nspin
|
||||
Fp(:,:,ispin) = matmul(transpose(X(:,:)),matmul(F(:,:,ispin),X(:,:)))
|
||||
end do
|
||||
|
||||
! Diagonalize Fock matrix to get eigenvectors and eigenvalues
|
||||
|
||||
cp(:,:,:) = Fp(:,:,:)
|
||||
do ispin=1,nspin
|
||||
call diagonalize_matrix(nBas,cp(:,:,ispin),eps(:,ispin))
|
||||
end do
|
||||
|
||||
! Back-transform eigenvectors in non-orthogonal basis
|
||||
|
||||
do ispin=1,nspin
|
||||
c(:,:,ispin) = matmul(X(:,:),cp(:,:,ispin))
|
||||
end do
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute KS energy
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
! Kinetic energy
|
||||
|
||||
do ispin=1,nspin
|
||||
ET(ispin) = trace_matrix(nBas,matmul(Pw(:,:,ispin),T(:,:)))
|
||||
end do
|
||||
|
||||
! Potential energy
|
||||
|
||||
do ispin=1,nspin
|
||||
EV(ispin) = trace_matrix(nBas,matmul(Pw(:,:,ispin),V(:,:)))
|
||||
end do
|
||||
|
||||
! Coulomb energy
|
||||
|
||||
EJ(1) = 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,1)))
|
||||
EJ(2) = 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,2))) &
|
||||
+ 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,1)))
|
||||
EJ(3) = 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,2)))
|
||||
|
||||
! Exchange energy
|
||||
|
||||
do ispin=1,nspin
|
||||
call unrestricted_exchange_energy(x_rung,x_DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas, &
|
||||
Pw(:,:,ispin),FxHF(:,:,ispin),rhow(:,ispin),drhow(:,:,ispin),Ex(ispin),Cx_choice)
|
||||
end do
|
||||
|
||||
! Correlation energy
|
||||
|
||||
call unrestricted_correlation_energy(c_rung,c_DFA,nEns,wEns,nGrid,weight,rhow,drhow,Ec)
|
||||
|
||||
! Total energy
|
||||
|
||||
Ew = sum(ET(:)) + sum(EV(:)) + sum(EJ(:)) + sum(Ex(:)) + sum(Ec(:))
|
||||
|
||||
! Check the grid accuracy by computing the number of electrons
|
||||
|
||||
do ispin=1,nspin
|
||||
nEl(ispin) = electron_number(nGrid,weight,rhow(:,ispin))
|
||||
end do
|
||||
|
||||
! Dump results
|
||||
|
||||
write(*,'(1X,A1,1X,I3,1X,A1,1X,F16.10,1X,A1,1X,F16.10,1X,A1,1X,F16.10,1X,A1,1X,F10.6,1X,A1,1X,F10.6,1X,A1,1X)') &
|
||||
'|',nSCF,'|',Ew + ENuc,'|',sum(Ex(:)),'|',sum(Ec(:)),'|',conv,'|',sum(nEl(:)),'|'
|
||||
|
||||
end do
|
||||
write(*,*)'------------------------------------------------------------------------------------------'
|
||||
!------------------------------------------------------------------------
|
||||
! End of SCF loop
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
! Did it actually converge?
|
||||
|
||||
if(nSCF == maxSCF) then
|
||||
|
||||
write(*,*)
|
||||
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
|
||||
write(*,*)' Convergence failed '
|
||||
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
|
||||
write(*,*)
|
||||
|
||||
stop
|
||||
|
||||
end if
|
||||
|
||||
! Compute final KS energy
|
||||
|
||||
call print_UKS(nBas,nO,eps,c,ENuc,ET,EV,EJ,Ex,Ec,Ew)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute individual energies from ensemble energy
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
|
||||
call unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas, &
|
||||
AO,dAO,nO,nV,T,V,ERI,ENuc,eps,Pw,rhow,drhow,J,Fx,FxHF,Fc,P,rho,drho,Ew,E,Om,occnum,Cx_choice)
|
||||
|
||||
end subroutine GOK_UKS
|
@ -1,51 +0,0 @@
|
||||
subroutine RB88_gga_exchange_energy(nGrid,weight,rho,drho,Ex)
|
||||
|
||||
! Compute restricted version of Becke's 88 GGA exchange energy
|
||||
|
||||
implicit none
|
||||
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
double precision,intent(in) :: drho(ncart,nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: beta
|
||||
double precision :: r,g,x
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: Ex
|
||||
|
||||
! Coefficients for B88 GGA exchange functional
|
||||
|
||||
beta = 0.0042d0
|
||||
|
||||
! Compute GGA exchange energy
|
||||
|
||||
Ex = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,0.5d0*rho(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
g = 0.25d0*(drho(1,iG)**2 + drho(2,iG)**2 + drho(3,iG)**2)
|
||||
x = sqrt(g)/r**(4d0/3d0)
|
||||
|
||||
Ex = Ex + weight(iG)*CxLDA*r**(4d0/3d0) &
|
||||
- weight(iG)*beta*x**2*r**(4d0/3d0)/(1d0 + 6d0*beta*x*asinh(x))
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
|
||||
Ex = 2d0*Ex
|
||||
|
||||
end subroutine RB88_gga_exchange_energy
|
@ -1,59 +0,0 @@
|
||||
subroutine RB88_gga_exchange_individual_energy(nGrid,weight,rhow,drhow,rho,drho,Ex)
|
||||
|
||||
! Compute restricted Becke's GGA indivudal energy
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid)
|
||||
double precision,intent(in) :: drhow(ncart,nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
double precision,intent(in) :: drho(ncart,nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: beta
|
||||
double precision :: r,rI,g,x
|
||||
double precision :: ex_p,dexdr_p
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Ex
|
||||
|
||||
! Coefficients for B88 GGA exchange functional
|
||||
|
||||
beta = 0.0042d0
|
||||
|
||||
! Compute GGA exchange matrix in the AO basis
|
||||
|
||||
Ex = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,0.5d0*rhow(iG))
|
||||
rI = max(0d0,0.5d0*rho(iG))
|
||||
|
||||
if(r > threshold .or. rI > threshold) then
|
||||
|
||||
g = 0.25d0*(drho(1,iG)**2 + drho(2,iG)**2 + drho(3,iG)**2)
|
||||
x = sqrt(g)/r**(4d0/3d0)
|
||||
|
||||
dexdr_p = 4d0/3d0*r**(1d0/3d0)*(CxLDA - beta*g**(3d0/4d0)/r**2) &
|
||||
+ 2d0*beta*g**(3d0/4d0)/r**(5d0/3d0) &
|
||||
- 2d0*3d0/4d0*beta*g**(-1d0/4d0)/r**(2d0/3d0)
|
||||
|
||||
ex_p = CxLDA*r**(4d0/3d0) &
|
||||
- weight(iG)*beta*x**2*r**(4d0/3d0)/(1d0 + 6d0*beta*x*asinh(x))
|
||||
|
||||
Ex = Ex + weight(iG)*(ex_p*rI + dexdr_p*r*rI - dexdr_p*r*r)
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
|
||||
end subroutine RB88_gga_exchange_individual_energy
|
@ -1,64 +0,0 @@
|
||||
subroutine RB88_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
|
||||
! Compute restricted Becke's GGA exchange potential
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
integer,intent(in) :: nBas
|
||||
double precision,intent(in) :: AO(nBas,nGrid)
|
||||
double precision,intent(in) :: dAO(ncart,nBas,nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
double precision,intent(in) :: drho(ncart,nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: mu,nu,iG
|
||||
double precision :: beta
|
||||
double precision :: r,g,vAO,gAO
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Fx(nBas,nBas)
|
||||
|
||||
! Coefficients for B88 GGA exchange functional
|
||||
|
||||
beta = 0.0042d0
|
||||
|
||||
! Compute GGA exchange matrix in the AO basis
|
||||
|
||||
Fx(:,:) = 0d0
|
||||
|
||||
do mu=1,nBas
|
||||
do nu=1,nBas
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,0.5d0*rho(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
|
||||
g = 0.25d0*(drho(1,iG)**2 + drho(2,iG)**2 + drho(3,iG)**2)
|
||||
vAO = weight(iG)*AO(mu,iG)*AO(nu,iG)
|
||||
Fx(mu,nu) = Fx(mu,nu) &
|
||||
+ vAO*(4d0/3d0*r**(1d0/3d0)*(CxLDA - beta*g**(3d0/4d0)/r**2) &
|
||||
+ 2d0*beta*g**(3d0/4d0)/r**(5d0/3d0))
|
||||
|
||||
gAO = drho(1,iG)*(dAO(1,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(1,nu,iG)) &
|
||||
+ drho(2,iG)*(dAO(2,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(2,nu,iG)) &
|
||||
+ drho(3,iG)*(dAO(3,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(3,nu,iG))
|
||||
|
||||
gAO = weight(iG)*gAO
|
||||
|
||||
Fx(mu,nu) = Fx(mu,nu) - 2d0*gAO*3d0/4d0*beta*g**(-1d0/4d0)/r**(2d0/3d0)
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
end subroutine RB88_gga_exchange_potential
|
@ -1,123 +0,0 @@
|
||||
subroutine RCC_lda_exchange_derivative_discontinuity(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rhow,ExDD,Cx_choice)
|
||||
|
||||
! Compute the restricted version of the curvature-corrected exchange ensemble derivative
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
double precision,intent(in) :: aCC_w1(3)
|
||||
double precision,intent(in) :: aCC_w2(3)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid)
|
||||
integer,intent(in) :: Cx_choice
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iEns,jEns
|
||||
integer :: iG
|
||||
double precision :: r
|
||||
double precision,allocatable :: dExdw(:)
|
||||
double precision,external :: Kronecker_delta
|
||||
|
||||
double precision :: a1,b1,c1,w1
|
||||
double precision :: a2,b2,c2,w2
|
||||
double precision :: dCxdw1,dCxdw2
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: ExDD(nEns)
|
||||
|
||||
! Memory allocation
|
||||
|
||||
allocate(dExdw(nEns))
|
||||
|
||||
! Single excitation parameters
|
||||
|
||||
! a1 = 0.0d0
|
||||
! b1 = 0.0d0
|
||||
! c1 = 0.0d0
|
||||
|
||||
! Parameters for H2 at equilibrium
|
||||
|
||||
! a2 = +0.5751782560799208d0
|
||||
! b2 = -0.021108186591137282d0
|
||||
! c2 = -0.36718902716347124d0
|
||||
|
||||
! Parameters for stretch H2
|
||||
|
||||
! a2 = + 0.01922622507087411d0
|
||||
! b2 = - 0.01799647558018601d0
|
||||
! c2 = - 0.022945430666782573d0
|
||||
|
||||
! Parameters for He
|
||||
|
||||
! a2 = 1.9125735895875828d0
|
||||
! b2 = 2.715266992840757d0
|
||||
! c2 = 2.1634223380633086d0
|
||||
|
||||
a1 = aCC_w1(1)
|
||||
b1 = aCC_w1(2)
|
||||
c1 = aCC_w1(3)
|
||||
|
||||
a2 = aCC_w2(1)
|
||||
b2 = aCC_w2(2)
|
||||
c2 = aCC_w2(3)
|
||||
|
||||
w1 = wEns(2)
|
||||
w2 = wEns(3)
|
||||
|
||||
select case (Cx_choice)
|
||||
case(1)
|
||||
dCxdw1 = (0.5d0*b1 + (2d0*a1 + 0.5d0*c1)*(w1 - 0.5d0) - (1d0 - w1)*w1*(3d0*b1 + 4d0*c1*(w1 - 0.5d0)))
|
||||
dCxdw2 = 0.d0
|
||||
case(2)
|
||||
dCxdw1 = 0.d0
|
||||
dCxdw2 =(0.5d0*b2 + (2d0*a2 + 0.5d0*c2)*(w2 - 0.5d0) - (1d0 - w2)*w2*(3d0*b2 + 4d0*c2*(w2 - 0.5d0)))
|
||||
case(3)
|
||||
dCxdw1 = (0.5d0*b1 + (2d0*a1 + 0.5d0*c1)*(w1 - 0.5d0) - (1d0 - w1)*w1*(3d0*b1 + 4d0*c1*(w1 - 0.5d0))) &
|
||||
* (1d0 - w2*(1d0 - w2)*(a2 + b2*(w2 - 0.5d0) + c2*(w2 - 0.5d0)**2))
|
||||
|
||||
dCxdw2 = (1d0 - w1*(1d0 - w1)*(a1 + b1*(w1 - 0.5d0) + c1*(w1 - 0.5d0)**2)) &
|
||||
* (0.5d0*b2 + (2d0*a2 + 0.5d0*c2)*(w2 - 0.5d0) - (1d0 - w2)*w2*(3d0*b2 + 4d0*c2*(w2 - 0.5d0)))
|
||||
|
||||
case default
|
||||
dCxdw1 = 0.d0
|
||||
dCxdw2 = 0.d0
|
||||
|
||||
end select
|
||||
|
||||
dCxdw1 = CxLDA*dCxdw1
|
||||
dCxdw2 = CxLDA*dCxdw2
|
||||
|
||||
dExdw(:) = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rhow(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
|
||||
dExdw(1) = 0d0
|
||||
dExdw(2) = dExdw(2) + weight(iG)*dCxdw1*r**(4d0/3d0)
|
||||
dExdw(3) = dExdw(3) + weight(iG)*dCxdw2*r**(4d0/3d0)
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
|
||||
ExDD(:) = 0d0
|
||||
|
||||
do iEns=1,nEns
|
||||
do jEns=2,nEns
|
||||
|
||||
ExDD(iEns) = ExDD(iEns) + (Kronecker_delta(iEns,jEns) - wEns(jEns))*dExdw(jEns)
|
||||
|
||||
end do
|
||||
end do
|
||||
|
||||
end subroutine RCC_lda_exchange_derivative_discontinuity
|
@ -1,101 +0,0 @@
|
||||
subroutine RCC_lda_exchange_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rho,Ex,Cx_choice)
|
||||
|
||||
! Compute the restricted version of the curvature-corrected exchange functional
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
double precision,intent(in) :: aCC_w1(3)
|
||||
double precision,intent(in) :: aCC_w2(3)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
integer,intent(in) :: Cx_choice
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: r
|
||||
|
||||
double precision :: a1,b1,c1,w1
|
||||
double precision :: a2,b2,c2,w2
|
||||
double precision :: Fx1,Fx2,Cx
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: Ex
|
||||
|
||||
! Single excitation parameter
|
||||
|
||||
! a1 = 0.0d0
|
||||
! b1 = 0.0d0
|
||||
! c1 = 0.0d0
|
||||
|
||||
! Parameters for H2 at equilibrium
|
||||
|
||||
! a2 = +0.5751782560799208d0
|
||||
! b2 = -0.021108186591137282d0
|
||||
! c2 = -0.36718902716347124d0
|
||||
|
||||
! Parameters for stretch H2
|
||||
|
||||
! a2 = + 0.01922622507087411d0
|
||||
! b2 = - 0.01799647558018601d0
|
||||
! c2 = - 0.022945430666782573d0
|
||||
|
||||
! Parameters for He
|
||||
|
||||
! a2 = 1.9125735895875828d0
|
||||
! b2 = 2.715266992840757d0
|
||||
! c2 = 2.1634223380633086d0
|
||||
|
||||
a1 = aCC_w1(1)
|
||||
b1 = aCC_w1(2)
|
||||
c1 = aCC_w1(3)
|
||||
|
||||
a2 = aCC_w2(1)
|
||||
b2 = aCC_w2(2)
|
||||
c2 = aCC_w2(3)
|
||||
|
||||
|
||||
w1 = wEns(2)
|
||||
Fx1 = 1d0 - w1*(1d0 - w1)*(a1 + b1*(w1 - 0.5d0) + c1*(w1 - 0.5d0)**2)
|
||||
|
||||
w2 = wEns(3)
|
||||
Fx2 = 1d0 - w2*(1d0 - w2)*(a2 + b2*(w2 - 0.5d0) + c2*(w2 - 0.5d0)**2)
|
||||
|
||||
select case (Cx_choice)
|
||||
|
||||
case(1)
|
||||
Cx = CxLDA*Fx1
|
||||
|
||||
case(2)
|
||||
Cx = CxLDA*Fx2
|
||||
|
||||
case(3)
|
||||
Cx = CxLDA*Fx2*Fx1
|
||||
|
||||
case default
|
||||
Cx = CxLDA
|
||||
|
||||
end select
|
||||
|
||||
! Compute GIC-LDA exchange energy
|
||||
|
||||
Ex = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
Ex = Ex + weight(iG)*Cx*r**(4d0/3d0)
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
end subroutine RCC_lda_exchange_energy
|
@ -1,111 +0,0 @@
|
||||
subroutine RCC_lda_exchange_individual_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rhow,rho,Ex,Cx_choice)
|
||||
|
||||
! Compute the restricted version of the curvature-corrected exchange functional
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
double precision,intent(in) :: aCC_w1(3)
|
||||
double precision,intent(in) :: aCC_w2(3)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
integer,intent(in) :: Cx_choice
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: r,rI
|
||||
double precision :: e_p,dedr
|
||||
|
||||
double precision :: a1,b1,c1,w1
|
||||
double precision :: a2,b2,c2,w2
|
||||
double precision :: Fx1,Fx2,Cx
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Ex
|
||||
|
||||
! Single excitation parameter
|
||||
|
||||
! a1 = 0.0d0
|
||||
! b1 = 0.0d0
|
||||
! c1 = 0.0d0
|
||||
|
||||
! Parameters for H2 at equilibrium
|
||||
|
||||
! a2 = +0.5751782560799208d0
|
||||
! b2 = -0.021108186591137282d0
|
||||
! c2 = -0.36718902716347124d0
|
||||
|
||||
! Parameters for stretch H2
|
||||
|
||||
! a2 = + 0.01922622507087411d0
|
||||
! b2 = - 0.01799647558018601d0
|
||||
! c2 = - 0.022945430666782573d0
|
||||
|
||||
! Parameters for He
|
||||
|
||||
! a2 = 1.9125735895875828d0
|
||||
! b2 = 2.715266992840757d0
|
||||
! c2 = 2.1634223380633086d0
|
||||
|
||||
|
||||
|
||||
a1 = aCC_w1(1)
|
||||
b1 = aCC_w1(2)
|
||||
c1 = aCC_w1(3)
|
||||
|
||||
|
||||
|
||||
a2 = aCC_w2(1)
|
||||
b2 = aCC_w2(2)
|
||||
c2 = aCC_w2(3)
|
||||
|
||||
|
||||
w1 = wEns(2)
|
||||
Fx1 = 1d0 - w1*(1d0 - w1)*(a1 + b1*(w1 - 0.5d0) + c1*(w1 - 0.5d0)**2)
|
||||
|
||||
w2 = wEns(3)
|
||||
Fx2 = 1d0 - w2*(1d0 - w2)*(a2 + b2*(w2 - 0.5d0) + c2*(w2 - 0.5d0)**2)
|
||||
|
||||
select case (Cx_choice)
|
||||
|
||||
case(1)
|
||||
Cx = CxLDA*Fx1
|
||||
|
||||
case(2)
|
||||
Cx = CxLDA*Fx2
|
||||
|
||||
case(3)
|
||||
Cx = CxLDA*Fx2*Fx1
|
||||
|
||||
case default
|
||||
Cx = CxLDA
|
||||
|
||||
end select
|
||||
|
||||
! Compute LDA exchange matrix in the AO basis
|
||||
|
||||
Ex = 0d0
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rhow(iG))
|
||||
rI = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold .or. rI > threshold) then
|
||||
|
||||
e_p = Cx*r**(1d0/3d0)
|
||||
dedr = 1d0/3d0*Cx*r**(-2d0/3d0)
|
||||
Ex = Ex + weight(iG)*(e_p*rI + dedr*r*rI - dedr*r*r)
|
||||
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
end subroutine RCC_lda_exchange_individual_energy
|
@ -1,114 +0,0 @@
|
||||
subroutine RCC_lda_exchange_potential(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,AO,rho,Fx,Cx_choice)
|
||||
|
||||
! Compute the restricted version of the curvature-corrected exchange potential
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
double precision,intent(in) :: aCC_w1(3)
|
||||
double precision,intent(in) :: aCC_w2(3)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
integer,intent(in) :: nBas
|
||||
double precision,intent(in) :: AO(nBas,nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
integer,intent(in) :: Cx_choice
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: mu,nu,iG
|
||||
double precision :: r,vAO
|
||||
|
||||
double precision :: a1,b1,c1,w1
|
||||
double precision :: a2,b2,c2,w2
|
||||
double precision :: Fx1,Fx2,Cx
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Fx(nBas,nBas)
|
||||
|
||||
! Single excitation parameter
|
||||
|
||||
! a1 = 0.0d0
|
||||
! b1 = 0.0d0
|
||||
! c1 = 0.0d0
|
||||
|
||||
! Parameters for H2 at equilibrium
|
||||
|
||||
! a2 = +0.5751782560799208d0
|
||||
! b2 = -0.021108186591137282d0
|
||||
! c2 = -0.36718902716347124d0
|
||||
|
||||
! Parameters for stretch H2
|
||||
|
||||
! a2 = + 0.01922622507087411d0
|
||||
! b2 = - 0.01799647558018601d0
|
||||
! c2 = - 0.022945430666782573d0
|
||||
|
||||
! Parameters for He
|
||||
|
||||
! a2 = 1.9125735895875828d0
|
||||
! b2 = 2.715266992840757d0
|
||||
! c2 = 2.1634223380633086d0
|
||||
|
||||
! Parameters for He N -> N-1
|
||||
|
||||
a1 = aCC_w1(1)
|
||||
b1 = aCC_w1(2)
|
||||
c1 = aCC_w1(3)
|
||||
|
||||
! Parameters for He N -> N+1
|
||||
|
||||
a2 = aCC_w2(1)
|
||||
b2 = aCC_w2(2)
|
||||
c2 = aCC_w2(3)
|
||||
|
||||
w1 = wEns(2)
|
||||
Fx1 = 1d0 - w1*(1d0 - w1)*(a1 + b1*(w1 - 0.5d0) + c1*(w1 - 0.5d0)**2)
|
||||
|
||||
w2 = wEns(3)
|
||||
Fx2 = 1d0 - w2*(1d0 - w2)*(a2 + b2*(w2 - 0.5d0) + c2*(w2 - 0.5d0)**2)
|
||||
|
||||
select case (Cx_choice)
|
||||
|
||||
case(1)
|
||||
Cx = CxLDA*Fx1
|
||||
|
||||
case(2)
|
||||
Cx = CxLDA*Fx2
|
||||
|
||||
case(3)
|
||||
Cx = CxLDA*Fx2*Fx1
|
||||
|
||||
case default
|
||||
Cx = CxLDA
|
||||
|
||||
end select
|
||||
|
||||
|
||||
! Compute LDA exchange matrix in the AO basis
|
||||
|
||||
Fx(:,:) = 0d0
|
||||
|
||||
do mu=1,nBas
|
||||
do nu=1,nBas
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
|
||||
vAO = weight(iG)*AO(mu,iG)*AO(nu,iG)
|
||||
Fx(mu,nu) = Fx(mu,nu) + vAO*4d0/3d0*Cx*r**(1d0/3d0)
|
||||
|
||||
endif
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine RCC_lda_exchange_potential
|
@ -1,61 +0,0 @@
|
||||
subroutine RMFL20_lda_correlation_derivative_discontinuity(nEns,wEns,nGrid,weight,rhow,EcDD)
|
||||
|
||||
! Compute the restricted version of the eLDA correlation part of the derivative discontinuity
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iEns,jEns
|
||||
double precision,allocatable :: aMFL(:,:)
|
||||
double precision :: dEcdw(nEns)
|
||||
double precision,external :: Kronecker_delta
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: EcDD(nEns)
|
||||
|
||||
! Allocation
|
||||
|
||||
allocate(aMFL(3,nEns))
|
||||
|
||||
! Parameters for weight-dependent LDA correlation functional
|
||||
|
||||
aMFL(1,1) = -0.0238184d0
|
||||
aMFL(2,1) = +0.00540994d0
|
||||
aMFL(3,1) = +0.0830766d0
|
||||
|
||||
aMFL(1,2) = -0.0282814d0
|
||||
aMFL(2,2) = +0.00273925d0
|
||||
aMFL(3,2) = +0.0664914d0
|
||||
|
||||
aMFL(1,3) = -0.0144633d0
|
||||
aMFL(2,3) = -0.0506019d0
|
||||
aMFL(3,3) = +0.0331417d0
|
||||
|
||||
! Compute correlation energy for ground, singly-excited and doubly-excited states
|
||||
|
||||
do iEns=1,nEns
|
||||
call restricted_elda_correlation_energy(aMFL(1:3,iEns),nGrid,weight(:),rhow(:),dEcdw(iEns))
|
||||
end do
|
||||
|
||||
EcDD(:) = 0d0
|
||||
|
||||
do iEns=1,nEns
|
||||
do jEns=1,nEns
|
||||
|
||||
EcDD(iEns) = EcDD(iEns) + (Kronecker_delta(iEns,jEns) - wEns(jEns))*(dEcdw(jEns) - dEcdw(1))
|
||||
|
||||
end do
|
||||
end do
|
||||
|
||||
end subroutine RMFL20_lda_correlation_derivative_discontinuity
|
@ -1,69 +0,0 @@
|
||||
subroutine RMFL20_lda_correlation_energy(LDA_centered,nEns,wEns,nGrid,weight,rho,Ec)
|
||||
|
||||
! Compute the restricted version of the Marut-Fromager-Loos weight-dependent correlation functional
|
||||
! The RMFL20 is a two-state, single-weight correlation functional for spin-unpolarized systems
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
logical,intent(in) :: LDA_centered
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iEns
|
||||
double precision :: EcLDA
|
||||
double precision,allocatable :: aMFL(:,:)
|
||||
double precision,allocatable :: EceLDA(:)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: Ec
|
||||
|
||||
! Allocation
|
||||
|
||||
allocate(aMFL(3,nEns),EceLDA(nEns))
|
||||
|
||||
! Parameters for weight-dependent LDA correlation functional
|
||||
|
||||
aMFL(1,1) = -0.0238184d0
|
||||
aMFL(2,1) = +0.00540994d0
|
||||
aMFL(3,1) = +0.0830766d0
|
||||
|
||||
aMFL(1,2) = -0.0282814d0
|
||||
aMFL(2,2) = +0.00273925d0
|
||||
aMFL(3,2) = +0.0664914d0
|
||||
|
||||
aMFL(1,3) = -0.0144633d0
|
||||
aMFL(2,3) = -0.0506019d0
|
||||
aMFL(3,3) = +0.0331417d0
|
||||
|
||||
! Compute correlation energy for ground and doubly-excited states
|
||||
|
||||
do iEns=1,nEns
|
||||
call restricted_elda_correlation_energy(aMFL(1:3,iEns),nGrid,weight(:),rho(:),EceLDA(iEns))
|
||||
end do
|
||||
|
||||
! LDA-centered functional
|
||||
|
||||
if(LDA_centered) then
|
||||
|
||||
call RVWN5_lda_correlation_energy(nGrid,weight(:),rho(:),EcLDA)
|
||||
|
||||
EceLDA(3) = EcLDA + wEns(3)*(EceLDA(3) - EceLDA(1))
|
||||
EceLDA(2) = EcLDA + wEns(2)*(EceLDA(2) - EceLDA(1))
|
||||
EceLDA(1) = EcLDA
|
||||
|
||||
end if
|
||||
|
||||
! Weight-denpendent functional for ensembles
|
||||
|
||||
Ec = dot_product(wEns(:),EceLDA(:))
|
||||
|
||||
end subroutine RMFL20_lda_correlation_energy
|
@ -1,69 +0,0 @@
|
||||
subroutine RMFL20_lda_correlation_individual_energy(LDA_centered,nEns,wEns,nGrid,weight,rhow,rho,Ec)
|
||||
|
||||
! Compute eLDA correlation energy
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
logical,intent(in) :: LDA_centered
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iEns
|
||||
double precision :: EcLDA
|
||||
double precision,allocatable :: aMFL(:,:)
|
||||
double precision,allocatable :: EceLDA(:)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: Ec
|
||||
|
||||
! Allocation
|
||||
|
||||
allocate(aMFL(3,nEns),EceLDA(nEns))
|
||||
|
||||
! Parameters for weight-dependent LDA correlation functional
|
||||
|
||||
aMFL(1,1) = -0.0238184d0
|
||||
aMFL(2,1) = +0.00540994d0
|
||||
aMFL(3,1) = +0.0830766d0
|
||||
|
||||
aMFL(1,2) = -0.0282814d0
|
||||
aMFL(2,2) = +0.00273925d0
|
||||
aMFL(3,2) = +0.0664914d0
|
||||
|
||||
aMFL(1,3) = -0.0144633d0
|
||||
aMFL(2,3) = -0.0506019d0
|
||||
aMFL(3,3) = +0.0331417d0
|
||||
|
||||
! Compute correlation energy for ground- and doubly-excited states
|
||||
|
||||
do iEns=1,nEns
|
||||
call restricted_elda_correlation_individual_energy(aMFL(1:3,iEns),nGrid,weight(:),rhow(:),rho(:),EceLDA(iEns))
|
||||
end do
|
||||
|
||||
! LDA-centered functional
|
||||
|
||||
if(LDA_centered) then
|
||||
|
||||
call RVWN5_lda_correlation_individual_energy(nGrid,weight(:),rhow(:),rho(:),EcLDA)
|
||||
|
||||
EceLDA(3) = EcLDA + wEns(3)*(EceLDA(3) - EceLDA(1))
|
||||
EceLDA(2) = EcLDA + wEns(2)*(EceLDA(2) - EceLDA(1))
|
||||
EceLDA(1) = EcLDA
|
||||
|
||||
end if
|
||||
|
||||
! Weight-denpendent functional for ensembles
|
||||
|
||||
Ec = dot_product(wEns(:),EceLDA(:))
|
||||
|
||||
end subroutine RMFL20_lda_correlation_individual_energy
|
@ -1,73 +0,0 @@
|
||||
subroutine RMFL20_lda_correlation_potential(LDA_centered,nEns,wEns,nGrid,weight,nBas,AO,rho,Fc)
|
||||
|
||||
! Compute Marut-Fromager-Loos weight-dependent LDA correlation potential
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
logical,intent(in) :: LDA_centered
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
integer,intent(in) :: nBas
|
||||
double precision,intent(in) :: AO(nBas,nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iEns
|
||||
double precision,allocatable :: aMFL(:,:)
|
||||
double precision,allocatable :: FcLDA(:,:)
|
||||
double precision,allocatable :: FceLDA(:,:,:)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Fc(nBas,nBas)
|
||||
|
||||
! Allocation
|
||||
|
||||
allocate(aMFL(3,nEns),FcLDA(nBas,nBas),FceLDA(nBas,nBas,nEns))
|
||||
|
||||
! Parameters for weight-dependent LDA correlation functional
|
||||
|
||||
aMFL(1,1) = -0.0238184d0
|
||||
aMFL(2,1) = +0.00540994d0
|
||||
aMFL(3,1) = +0.0830766d0
|
||||
|
||||
aMFL(1,2) = -0.0282814d0
|
||||
aMFL(2,2) = +0.00273925d0
|
||||
aMFL(3,2) = +0.0664914d0
|
||||
|
||||
aMFL(1,3) = -0.0144633d0
|
||||
aMFL(2,3) = -0.0506019d0
|
||||
aMFL(3,3) = +0.0331417d0
|
||||
|
||||
! Compute correlation energy for ground- and doubly-excited states
|
||||
|
||||
do iEns=1,nEns
|
||||
call restricted_elda_correlation_potential(aMFL(1:3,iEns),nGrid,weight(:),nBas,AO(:,:),rho(:),FceLDA(:,:,iEns))
|
||||
end do
|
||||
|
||||
! LDA-centered functional
|
||||
|
||||
if(LDA_centered) then
|
||||
|
||||
call RVWN5_lda_correlation_potential(nGrid,weight(:),nBas,AO(:,:),rho(:),FcLDA(:,:))
|
||||
|
||||
FceLDA(:,:,3) = FcLDA(:,:) + wEns(3)*(FceLDA(:,:,3) - FceLDA(:,:,1))
|
||||
FceLDA(:,:,2) = FcLDA(:,:) + wEns(2)*(FceLDA(:,:,2) - FceLDA(:,:,1))
|
||||
FceLDA(:,:,1) = FcLDA(:,:)
|
||||
|
||||
end if
|
||||
|
||||
! Weight-denpendent functional for ensembles
|
||||
|
||||
Fc(:,:) = 0d0
|
||||
do iEns=1,nEns
|
||||
Fc(:,:) = Fc(:,:) + wEns(iEns)*FceLDA(:,:,iEns)
|
||||
enddo
|
||||
|
||||
end subroutine RMFL20_lda_correlation_potential
|
@ -1,58 +0,0 @@
|
||||
subroutine RMFL20_lda_exchange_derivative_discontinuity(nEns,wEns,nGrid,weight,rhow,ExDD)
|
||||
|
||||
! Compute the restricted version of the eLDA exchange part of the derivative discontinuity
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iEns,jEns
|
||||
integer :: iG
|
||||
double precision :: r
|
||||
double precision :: dExdw(nEns)
|
||||
double precision,external :: Kronecker_delta
|
||||
|
||||
double precision,parameter :: Cx0 = - (4d0/3d0)*(1d0/pi)**(1d0/3d0)
|
||||
double precision,parameter :: Cx1 = - (176d0/105d0)*(1d0/pi)**(1d0/3d0)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: ExDD(nEns)
|
||||
|
||||
! Compute correlation energy for ground- and doubly-excited states
|
||||
|
||||
dExdw(:) = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rhow(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
|
||||
dExdw(1) = 0d0
|
||||
dExdw(2) = dExdw(2) + weight(iG)*(Cx1 - Cx0)*r**(4d0/3d0)
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
|
||||
ExDD(:) = 0d0
|
||||
|
||||
do iEns=1,nEns
|
||||
do jEns=2,nEns
|
||||
|
||||
ExDD(iEns) = ExDD(iEns) + (Kronecker_delta(iEns,jEns) - wEns(jEns))*dExdw(jEns)
|
||||
|
||||
end do
|
||||
end do
|
||||
|
||||
end subroutine RMFL20_lda_exchange_derivative_discontinuity
|
@ -1,53 +0,0 @@
|
||||
subroutine RMFL20_lda_exchange_energy(LDA_centered,nEns,wEns,nGrid,weight,rho,Ex)
|
||||
|
||||
! Compute the restricted version of the Marut-Fromager-Loos weight-dependent exchange functional
|
||||
! The RMFL20 is a two-state, single-weight exchange functional
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
logical,intent(in) :: LDA_centered
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
|
||||
double precision,parameter :: Cx0 = - (4d0/3d0)*(1d0/pi)**(1d0/3d0)
|
||||
double precision,parameter :: Cx1 = - (176d0/105d0)*(1d0/pi)**(1d0/3d0)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: Cxw
|
||||
double precision :: r
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: Ex
|
||||
|
||||
! Weight-denepdent Cx coefficient
|
||||
|
||||
if(LDA_centered) then
|
||||
Cxw = CxLDA + (Cx1 - Cx0)*wEns(2)
|
||||
else
|
||||
Cxw = wEns(1)*Cx0 + wEns(2)*Cx1
|
||||
end if
|
||||
|
||||
! Compute LDA exchange energy
|
||||
|
||||
Ex = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
Ex = Ex + weight(iG)*Cxw*r**(4d0/3d0)
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
end subroutine RMFL20_lda_exchange_energy
|
@ -1,58 +0,0 @@
|
||||
subroutine RMFL20_lda_exchange_individual_energy(LDA_centered,nEns,wEns,nGrid,weight,rhow,rho,Ex)
|
||||
|
||||
! Compute the restricted version of the Marut-Fromager-Loos 2020 weight-dependent exchange functional
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
logical,intent(in) :: LDA_centered
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: Cxw
|
||||
double precision :: r,rI
|
||||
double precision :: e_p,dedr
|
||||
|
||||
double precision,parameter :: Cx0 = - (4d0/3d0)*(1d0/pi)**(1d0/3d0)
|
||||
double precision,parameter :: Cx1 = - (176d0/105d0)*(1d0/pi)**(1d0/3d0)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Ex
|
||||
|
||||
! Weight-dependent Cx coefficient for RMFL20 exchange functional
|
||||
|
||||
if(LDA_centered) then
|
||||
Cxw = CxLDA + (Cx1 - Cx0)*wEns(2)
|
||||
else
|
||||
Cxw = wEns(1)*Cx0 + wEns(2)*Cx1
|
||||
end if
|
||||
|
||||
! Compute LDA exchange matrix in the AO basis
|
||||
|
||||
Ex = 0d0
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rhow(iG))
|
||||
rI = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold .or. rI > threshold) then
|
||||
|
||||
e_p = Cxw*r**(1d0/3d0)
|
||||
dedr = 1d0/3d0*Cxw*r**(-2d0/3d0)
|
||||
Ex = Ex + weight(iG)*(e_p*rI + dedr*r*rI - dedr*r*r)
|
||||
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
end subroutine RMFL20_lda_exchange_individual_energy
|
@ -1,61 +0,0 @@
|
||||
subroutine RMFL20_lda_exchange_potential(LDA_centered,nEns,wEns,nGrid,weight,nBas,AO,rho,Fx)
|
||||
|
||||
! Compute the restricted version of the weight-dependent MFL20 exchange potential
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
logical,intent(in) :: LDA_centered
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
integer,intent(in) :: nBas
|
||||
double precision,intent(in) :: AO(nBas,nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: mu,nu,iG
|
||||
double precision :: Cxw
|
||||
double precision :: r,vAO
|
||||
|
||||
double precision,parameter :: Cx0 = - (4d0/3d0)*(1d0/pi)**(1d0/3d0)
|
||||
double precision,parameter :: Cx1 = - (176d0/105d0)*(1d0/pi)**(1d0/3d0)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Fx(nBas,nBas)
|
||||
|
||||
! Weight-dependent Cx coefficient for RMFL20 exchange functional
|
||||
|
||||
if(LDA_centered) then
|
||||
Cxw = CxLDA + (Cx1 - Cx0)*wEns(2)
|
||||
else
|
||||
Cxw = wEns(1)*Cx0 + wEns(2)*Cx1
|
||||
end if
|
||||
|
||||
! Compute LDA exchange matrix in the AO basis
|
||||
|
||||
Fx(:,:) = 0d0
|
||||
|
||||
do mu=1,nBas
|
||||
do nu=1,nBas
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
|
||||
vAO = weight(iG)*AO(mu,iG)*AO(nu,iG)
|
||||
Fx(mu,nu) = Fx(mu,nu) + vAO*4d0/3d0*Cxw*r**(1d0/3d0)
|
||||
|
||||
endif
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine RMFL20_lda_exchange_potential
|
@ -1,38 +0,0 @@
|
||||
subroutine RS51_lda_exchange_energy(nGrid,weight,rho,Ex)
|
||||
|
||||
! Compute restriced version of Slater's LDA exchange energy
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: r
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: Ex
|
||||
|
||||
! Compute LDA exchange energy
|
||||
|
||||
Ex = 0d0
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
|
||||
Ex = Ex + weight(iG)*CxLDA*r**(4d0/3d0)
|
||||
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
end subroutine RS51_lda_exchange_energy
|
@ -1,44 +0,0 @@
|
||||
subroutine RS51_lda_exchange_individual_energy(nGrid,weight,rhow,rho,Ex)
|
||||
|
||||
! Compute the restricted version of Slater's LDA exchange individual energy
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: r,rI
|
||||
double precision :: e,dedr
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Ex
|
||||
|
||||
! Compute LDA exchange matrix in the AO basis
|
||||
|
||||
Ex = 0d0
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rhow(iG))
|
||||
rI = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold .or. rI > threshold) then
|
||||
|
||||
e = CxLDA*r**(1d0/3d0)
|
||||
dedr = 1d0/3d0*CxLDA*r**(-2d0/3d0)
|
||||
|
||||
Ex = Ex + weight(iG)*(e*rI + dedr*r*rI - dedr*r*r)
|
||||
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
end subroutine RS51_lda_exchange_individual_energy
|
@ -1,45 +0,0 @@
|
||||
subroutine RS51_lda_exchange_potential(nGrid,weight,nBas,AO,rho,Fx)
|
||||
|
||||
! Compute the restricted version of Slater's LDA exchange potential
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
integer,intent(in) :: nBas
|
||||
double precision,intent(in) :: AO(nBas,nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: mu,nu,iG
|
||||
double precision :: r,vAO
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Fx(nBas,nBas)
|
||||
|
||||
! Compute LDA exchange matrix in the AO basis
|
||||
|
||||
Fx(:,:) = 0d0
|
||||
do mu=1,nBas
|
||||
do nu=1,nBas
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
|
||||
vAO = weight(iG)*AO(mu,iG)*AO(nu,iG)
|
||||
Fx(mu,nu) = Fx(mu,nu) + vAO*4d0/3d0*CxLDA*r**(1d0/3d0)
|
||||
|
||||
endif
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine RS51_lda_exchange_potential
|
@ -1,62 +0,0 @@
|
||||
subroutine RVWN5_lda_correlation_energy(nGrid,weight,rho,Ec)
|
||||
|
||||
! Compute the restricted VWN5 LDA correlation energy
|
||||
|
||||
implicit none
|
||||
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: r,rs,x
|
||||
double precision :: a_p,x0_p,xx0_p,b_p,c_p,x_p,q_p
|
||||
|
||||
double precision :: ec_p
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: Ec
|
||||
|
||||
! Parameters of the functional
|
||||
|
||||
a_p = +0.0621814D0/2D0
|
||||
x0_p = -0.10498d0
|
||||
b_p = +3.72744d0
|
||||
c_p = +12.9352d0
|
||||
|
||||
! Initialization
|
||||
|
||||
Ec = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
|
||||
rs = (4d0*pi*r/3d0)**(-1d0/3d0)
|
||||
x = sqrt(rs)
|
||||
|
||||
x_p = x*x + b_p*x + c_p
|
||||
|
||||
xx0_p = x0_p*x0_p + b_p*x0_p + c_p
|
||||
|
||||
q_p = sqrt(4d0*c_p - b_p*b_p)
|
||||
|
||||
ec_p = a_p*( log(x**2/x_p) + 2d0*b_p/q_p*atan(q_p/(2d0*x + b_p)) &
|
||||
- b_p*x0_p/xx0_p*( log((x - x0_p)**2/x_p) + 2d0*(b_p + 2d0*x0_p)/q_p*atan(q_p/(2d0*x + b_p)) ) )
|
||||
|
||||
Ec = Ec + weight(iG)*ec_p*r
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
|
||||
end subroutine RVWN5_lda_correlation_energy
|
@ -1,73 +0,0 @@
|
||||
subroutine RVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,Ec)
|
||||
|
||||
! Compute the restricted VWN5 LDA correlation individual energies
|
||||
|
||||
implicit none
|
||||
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: r,rI,rs,x
|
||||
double precision :: a_p,x0_p,xx0_p,b_p,c_p,x_p,q_p
|
||||
double precision :: dxdrs,dxdx_p,decdx_p
|
||||
double precision :: drsdr,decdr_p
|
||||
double precision :: ec_p
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: Ec
|
||||
|
||||
! Parameters of the functional
|
||||
|
||||
a_p = +0.0621814D0/2D0
|
||||
x0_p = -0.10498d0
|
||||
b_p = +3.72744d0
|
||||
c_p = +12.9352d0
|
||||
|
||||
! Initialization
|
||||
|
||||
Ec = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rhow(iG))
|
||||
rI = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold .or. rI > threshold) then
|
||||
|
||||
rs = (4d0*pi*r/3d0)**(-1d0/3d0)
|
||||
x = sqrt(rs)
|
||||
|
||||
x_p = x*x + b_p*x + c_p
|
||||
xx0_p = x0_p*x0_p + b_p*x0_p + c_p
|
||||
q_p = sqrt(4d0*c_p - b_p*b_p)
|
||||
|
||||
ec_p = a_p*( log(x**2/x_p) + 2d0*b_p/q_p*atan(q_p/(2d0*x + b_p)) &
|
||||
- b_p*x0_p/xx0_p*( log((x - x0_p)**2/x_p) + 2d0*(b_p + 2d0*x0_p)/q_p*atan(q_p/(2d0*x + b_p)) ) )
|
||||
|
||||
drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
|
||||
dxdrs = 0.5d0/sqrt(rs)
|
||||
|
||||
dxdx_p = 2d0*x + b_p
|
||||
|
||||
decdx_p = a_p*( 2d0/x - 4d0*b_p/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p &
|
||||
- b_p*x0_p/xx0_p*( 2/(x-x0_p) - 4d0*(b_p+2d0*x0_p)/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p ) )
|
||||
|
||||
decdr_p = drsdr*dxdrs*decdx_p
|
||||
|
||||
Ec = Ec + weight(iG)*(ec_p*rI + decdr_p*r*rI - decdr_p*r*r)
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
|
||||
end subroutine RVWN5_lda_correlation_individual_energy
|
@ -1,78 +0,0 @@
|
||||
subroutine RVWN5_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
|
||||
|
||||
! Compute the restricted VWN5 LDA correlation potential
|
||||
|
||||
implicit none
|
||||
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
integer,intent(in) :: nBas
|
||||
double precision,intent(in) :: AO(nBas,nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: mu,nu,iG
|
||||
double precision :: r,rs,x
|
||||
double precision :: a_p,x0_p,xx0_p,b_p,c_p,x_p,q_p
|
||||
double precision :: dxdrs,dxdx_p,decdx_p
|
||||
double precision :: drsdr,decdr_p
|
||||
|
||||
double precision :: ec_p
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: Fc(nBas,nBas)
|
||||
|
||||
! Parameters of the functional
|
||||
|
||||
a_p = +0.0621814d0/2d0
|
||||
x0_p = -0.10498d0
|
||||
b_p = +3.72744d0
|
||||
c_p = +12.9352d0
|
||||
|
||||
! Initialization
|
||||
|
||||
Fc(:,:) = 0d0
|
||||
|
||||
do mu=1,nBas
|
||||
do nu=1,nBas
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
|
||||
rs = (4d0*pi*r/3d0)**(-1d0/3d0)
|
||||
x = sqrt(rs)
|
||||
|
||||
x_p = x*x + b_p*x + c_p
|
||||
xx0_p = x0_p*x0_p + b_p*x0_p + c_p
|
||||
q_p = sqrt(4d0*c_p - b_p*b_p)
|
||||
|
||||
ec_p = a_p*( log(x**2/x_p) + 2d0*b_p/q_p*atan(q_p/(2d0*x + b_p)) &
|
||||
- b_p*x0_p/xx0_p*( log((x - x0_p)**2/x_p) + 2d0*(b_p + 2d0*x0_p)/q_p*atan(q_p/(2d0*x + b_p)) ) )
|
||||
|
||||
drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
|
||||
dxdrs = 0.5d0/sqrt(rs)
|
||||
|
||||
dxdx_p = 2d0*x + b_p
|
||||
|
||||
decdx_p = a_p*( 2d0/x - 4d0*b_p/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p &
|
||||
- b_p*x0_p/xx0_p*( 2/(x-x0_p) - 4d0*(b_p+2d0*x0_p)/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p ) )
|
||||
|
||||
decdr_p = drsdr*dxdrs*decdx_p
|
||||
|
||||
Fc(mu,nu) = Fc(mu,nu) + weight(iG)*AO(mu,iG)*AO(nu,iG)*(ec_p + decdr_p*r)
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
end subroutine RVWN5_lda_correlation_potential
|
Loading…
Reference in New Issue
Block a user